FANG Q L. Fractional order adaptive sliding mode control for nonlinear anti-roll of ship[J]. Chinese Journal of Ship Research, 2021, 16(4): 132–139. DOI: 10.19693/j.issn.1673-3185.02069
Citation: FANG Q L. Fractional order adaptive sliding mode control for nonlinear anti-roll of ship[J]. Chinese Journal of Ship Research, 2021, 16(4): 132–139. DOI: 10.19693/j.issn.1673-3185.02069

Fractional order adaptive sliding mode control for nonlinear anti-roll of ship

More Information
  • Received Date: August 10, 2020
  • Revised Date: November 02, 2020
  • Available Online: March 12, 2021
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to solve the problem of ship nonlinear rolling control, a fractional order adaptive sliding mode control (FOASMC) algorithm is proposed.
      Methods  First, the spectral density of random waves, spectral density of wave inclination and spectrum of waves acting on ships are calculated using a random wave model with long peak waves. The rolling angle tracking error of the system is then verified on the basis of Lyapunov stability theory. Moreover, the switching function is designed to make the system robust to uncertainties and external disturbances. Finally, the effects of fractional order, control law gain and sliding surface mode gain are analyzed.
      Results  The results show that the mean rolling angle and standard deviation of FOASMC are smaller than those of basic sliding mode control (SMC) for various speeds and wave directions. For example, when the ship's speed is 10 m/s and the encountering wave direction is five degrees, the average rolling angle is 25.89% of the basic SMC, and the mean square deviation is 14.32% of the basic SMC.
      Conclusions  It is proven that the proposed control algorithm has good stabilization effectiveness at various navigation speeds and encountering wave directions, as well as such advantages as strong robustness, continuous control input and no high gain.
  • [1]
    LAVIERI R S, GETSCHKO N, TANNURI E A. Roll stabilization control system by sliding mode[C]//Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft. Arenzano: IFAC, 2012: 447-452.
    [2]
    MORADI M, MALEKIZADE H. Robust adaptive first-second-order sliding mode control to stabilize the uncertain fin-roll dynamic[J]. Ocean Engineering, 2013, 69: 18–23. doi: 10.1016/j.oceaneng.2013.05.003
    [3]
    NGO Q H, NGUYEN N P, NGUYEN C N, et al. Fuzzy sliding mode control of an offshore container crane[J]. Ocean Engineering, 2017, 140: 125–134. doi: 10.1016/j.oceaneng.2017.05.019
    [4]
    CARLETTI C, GASPARRI A, LONGHI S, et al. Simultaneous roll damping and course keeping via sliding mode control for a marine vessel in seaway[C]//Proceedings of the 18th World Congress. Milano: IFAC, 2011: 13648-13653.
    [5]
    CARLETTI C, IPPOLITI G, LONGHI S, et al. Adaptive neural network based sliding mode control for fin roll stabilization of vessels[C]//Proceedings of the 8th IFAC International Conference on Manoeuvring and Control of Marine Craft. Guarujá,Brazil: IFAC, 2009: 322-327.
    [6]
    FANG M C, LUO J H. On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers[J]. Ocean Engineering, 2007, 34(3/4): 479–488. doi: 10.1016/j.oceaneng.2006.03.004
    [7]
    KOSHKOUEI A J, LAW Y, BURNHAM K J. Sliding mode and PID controllers for ship roll stabilisation: a comparative simulation study[C]//Proceedings of the 2005, 16th Triennial World Congress. Prague: IFAC, 2005: 7-12.
    [8]
    谢克峰. 水面小尺度浮动平台动力学特性与姿态稳定控制研究[D]. 南京: 南京理工大学, 2017.

    XIE K F. Research on dynamic characteristic and attitude stabilization control for offshore small floating platform[D]. Nanjing: Nanjing University of Science & Technology, 2017 (in Chinese).
    [9]
    王世凯, 金鸿章. 非线性非最小相位船舶舵减摇系统的滑模控制[J]. 计算机工程与应用, 2018, 54(9): 207–212. doi: 10.3778/j.issn.1002-8331.1612-0139

    WANG S K, JIN H Z. Nonlinear non-minimum phase rudder-roll damping systems of ship using sliding mode control[J]. Computer Engineering and Applications, 2018, 54(9): 207–212 (in Chinese). doi: 10.3778/j.issn.1002-8331.1612-0139
    [10]
    梁利华, 孙明晓, 栾添添. 减摇鳍升力反馈自适应控制系统设计[J]. 哈尔滨工程大学学报, 2017, 38(11): 1739–1744.

    LIANG L H, SUN M X, LUAN T T. Design of adaptive control system for lift feedback of fin stabilizer[J]. Journal of Harbin Engineering University, 2017, 38(11): 1739–1744 (in Chinese).
    [11]
    刘文帅. 船舶回转工况下的横摇控制仿真与研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    LIU W S. Research and simulation of ship roll control in turning motion[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [12]
    沈晓. 舵鳍联合减摇系统建模与反步滑模自适应控制[D]. 大连: 大连海事大学, 2017.

    SHEN X. Modeling and adaptive backstepping sliding mode control for rudder/fin joint roll stabilization system[D]. Dalian: Dalian Maritime University, 2017 (in Chinese).
    [13]
    胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7. doi: 10.19693/j.issn.1673-3185.01521

    HU J Z, TANG G Y, WANG J J, et al. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01521
    [14]
    刘志全, 金鸿章. 基于航速保持的舵减摇控制方法[J]. 中国舰船研究, 2017, 12(1): 128–133. doi: 10.3969/j.issn.1673-3185.2017.01.019

    LIU Z Q, JIN H Z. Method for rudder roll stabilization control by maintaining ship speed[J]. Chinese Journal of Ship Research, 2017, 12(1): 128–133 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.019
    [15]
    赵蕊, 许建, 王淼, 等. 基于遗传算法和分数阶技术的水下机器人航向控制[J]. 中国舰船研究, 2018, 13(6): 87–93. doi: 10.19693/j.issn.1673-3185.01185

    ZHAO R, XU J, WANG M, et al. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87–93 (in Chinese). doi: 10.19693/j.issn.1673-3185.01185
    [16]
    ZHOU M H, FENG Y, XUE C, et al. Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators[J]. Neurocomputing, 2020, 416: 143–151. doi: 10.1016/j.neucom.2019.04.087
    [17]
    FEI J T, WANG H. Recurrent neural network fractional-order sliding mode control of dynamic systems[J]. Journal of the Franklin Institute, 2020, 357(8): 4574–4591. doi: 10.1016/j.jfranklin.2020.01.050
    [18]
    MODIRI A, MOBAYEN S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems[J]. ISA Transactions, 2020, 105: 33–50. doi: 10.1016/j.isatra.2020.05.039
    [19]
    HAN S. Fractional-order command filtered backstepping sliding mode control with fractional-order nonlinear disturbance observer for nonlinear systems[J]. Journal of the Franklin Institute, 2020, 357(11): 6760–6776. doi: 10.1016/j.jfranklin.2020.04.055
    [20]
    金鸿章, 姚绪梁. 船舶控制原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2013.

    JIN H Z, YAO X L. The principle of ship control[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2013 (in Chinese).
    [21]
    PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego: Academic Press, 1998.
    [22]
    MONJE C A, CHEN Y O, VINAGRE B M. Fractional-order systems and controls: fundamentals and applications[M]. New York: Springer, 2010.
  • Related Articles

    [1]YAN Zhaokun, YANG Guanyu, WANG Hongdong. Adaptive surge control of variable-mass unmanned surface vehicle based on super-twisting sliding mode observation[J]. Chinese Journal of Ship Research, 2025, 20(1): 247-262. DOI: 10.19693/j.issn.1673-3185.03517
    [2]DING Zhilong, WANG Peng, WANG Yonggang, SU Boqun. Sliding mode controller with improved AGA for supercharged boiler drum water level control[J]. Chinese Journal of Ship Research, 2024, 19(2): 181-186. DOI: 10.19693/j.issn.1673-3185.03228
    [3]ZHANG Xianku, HONG Haochen. Design of ship course keeping controller based on zero-order holder and nonlinear modification[J]. Chinese Journal of Ship Research, 2024, 19(1): 84-89. DOI: 10.19693/j.issn.1673-3185.03036
    [4]LIU Jiahao, LIU Zhiquan. Finite-time filtered backstepping sliding mode adaptive control for rudder roll stabilization[J]. Chinese Journal of Ship Research, 2023, 18(6): 97-105. DOI: 10.19693/j.issn.1673-3185.03137
    [5]GUO Wenxuan, TANG Guoyuan, ZHAO Fan, WANG Quanbin, SUN Jianglong, QIAO Yu. Adaptive cascade tracking control of USV for recovery task[J]. Chinese Journal of Ship Research, 2023, 18(5): 111-120. DOI: 10.19693/j.issn.1673-3185.02882
    [6]WANG Wenxin, LIU Shang, ZHANG Guoqing, ZHANG Xianku. Robust adaptive course-keeping control of under-actuated ships with the rudder failure[J]. Chinese Journal of Ship Research, 2023, 18(1): 116-123. DOI: 10.19693/j.issn.1673-3185.02525
    [7]Hu Jianzhang, Tang Guoyuan, Wang Jianjun, Xie De. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1-7. DOI: 10.19693/j.issn.1673-3185.01521
    [8]Zhao Zhiping, Zhang Qiang. Adaptive self-regulation PID tracking control for the ship course[J]. Chinese Journal of Ship Research, 2019, 14(3): 145-151. DOI: 10.19693/j.issn.1673-3185.01305
    [9]ZHAO Rui, XU Jian, WANG Miao, XIANG Xianbo, XU Guohua. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87-93. DOI: 10.19693/j.issn.1673-3185.01185
    [10]ZHANG Yongsheng, ZHAO Shuqin. 船用蒸汽发生器水位的模糊自适应PID控制[J]. Chinese Journal of Ship Research, 2013, 8(3): 106-109. DOI: 10.3969/j.issn.1673-3185.2013.03.020
  • Cited by

    Periodical cited type(5)

    1. 董微微. 高速大舵角下回转舰船横摇力矩波动自动控制. 舰船科学技术. 2024(04): 47-50 .
    2. 李国帅,张显库,张安超. 智能船舶靠泊技术研究热点与趋势. 中国舰船研究. 2024(01): 3-14 . 本站查看
    3. 齐雪,石满红,董姗姗,潘花. 基于神经网络的零航速减摇鳍模型参考自适应控制设计. 安徽科技学院学报. 2023(04): 79-86 .
    4. 刘嘉昊,刘志全. 有限时间滤波反步滑模自适应舵减摇控制. 中国舰船研究. 2023(06): 97-105 . 本站查看
    5. 殷秋雯,罗春艳,孙惠. 双体清污船综合减摇自适应控制方法. 电子设计工程. 2022(07): 96-99+104 .

    Other cited types(6)

Catalog

    Article views (852) PDF downloads (107) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return