Citation: | FANG Q L. Fractional order adaptive sliding mode control for nonlinear anti-roll of ship[J]. Chinese Journal of Ship Research, 2021, 16(4): 132–139. DOI: 10.19693/j.issn.1673-3185.02069 |
[1] |
LAVIERI R S, GETSCHKO N, TANNURI E A. Roll stabilization control system by sliding mode[C]//Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft. Arenzano: IFAC, 2012: 447-452.
|
[2] |
MORADI M, MALEKIZADE H. Robust adaptive first-second-order sliding mode control to stabilize the uncertain fin-roll dynamic[J]. Ocean Engineering, 2013, 69: 18–23. doi: 10.1016/j.oceaneng.2013.05.003
|
[3] |
NGO Q H, NGUYEN N P, NGUYEN C N, et al. Fuzzy sliding mode control of an offshore container crane[J]. Ocean Engineering, 2017, 140: 125–134. doi: 10.1016/j.oceaneng.2017.05.019
|
[4] |
CARLETTI C, GASPARRI A, LONGHI S, et al. Simultaneous roll damping and course keeping via sliding mode control for a marine vessel in seaway[C]//Proceedings of the 18th World Congress. Milano: IFAC, 2011: 13648-13653.
|
[5] |
CARLETTI C, IPPOLITI G, LONGHI S, et al. Adaptive neural network based sliding mode control for fin roll stabilization of vessels[C]//Proceedings of the 8th IFAC International Conference on Manoeuvring and Control of Marine Craft. Guarujá,Brazil: IFAC, 2009: 322-327.
|
[6] |
FANG M C, LUO J H. On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers[J]. Ocean Engineering, 2007, 34(3/4): 479–488. doi: 10.1016/j.oceaneng.2006.03.004
|
[7] |
KOSHKOUEI A J, LAW Y, BURNHAM K J. Sliding mode and PID controllers for ship roll stabilisation: a comparative simulation study[C]//Proceedings of the 2005, 16th Triennial World Congress. Prague: IFAC, 2005: 7-12.
|
[8] |
谢克峰. 水面小尺度浮动平台动力学特性与姿态稳定控制研究[D]. 南京: 南京理工大学, 2017.
XIE K F. Research on dynamic characteristic and attitude stabilization control for offshore small floating platform[D]. Nanjing: Nanjing University of Science & Technology, 2017 (in Chinese).
|
[9] |
王世凯, 金鸿章. 非线性非最小相位船舶舵减摇系统的滑模控制[J]. 计算机工程与应用, 2018, 54(9): 207–212. doi: 10.3778/j.issn.1002-8331.1612-0139
WANG S K, JIN H Z. Nonlinear non-minimum phase rudder-roll damping systems of ship using sliding mode control[J]. Computer Engineering and Applications, 2018, 54(9): 207–212 (in Chinese). doi: 10.3778/j.issn.1002-8331.1612-0139
|
[10] |
梁利华, 孙明晓, 栾添添. 减摇鳍升力反馈自适应控制系统设计[J]. 哈尔滨工程大学学报, 2017, 38(11): 1739–1744.
LIANG L H, SUN M X, LUAN T T. Design of adaptive control system for lift feedback of fin stabilizer[J]. Journal of Harbin Engineering University, 2017, 38(11): 1739–1744 (in Chinese).
|
[11] |
刘文帅. 船舶回转工况下的横摇控制仿真与研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
LIU W S. Research and simulation of ship roll control in turning motion[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
|
[12] |
沈晓. 舵鳍联合减摇系统建模与反步滑模自适应控制[D]. 大连: 大连海事大学, 2017.
SHEN X. Modeling and adaptive backstepping sliding mode control for rudder/fin joint roll stabilization system[D]. Dalian: Dalian Maritime University, 2017 (in Chinese).
|
[13] |
胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7. doi: 10.19693/j.issn.1673-3185.01521
HU J Z, TANG G Y, WANG J J, et al. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01521
|
[14] |
刘志全, 金鸿章. 基于航速保持的舵减摇控制方法[J]. 中国舰船研究, 2017, 12(1): 128–133. doi: 10.3969/j.issn.1673-3185.2017.01.019
LIU Z Q, JIN H Z. Method for rudder roll stabilization control by maintaining ship speed[J]. Chinese Journal of Ship Research, 2017, 12(1): 128–133 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.019
|
[15] |
赵蕊, 许建, 王淼, 等. 基于遗传算法和分数阶技术的水下机器人航向控制[J]. 中国舰船研究, 2018, 13(6): 87–93. doi: 10.19693/j.issn.1673-3185.01185
ZHAO R, XU J, WANG M, et al. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87–93 (in Chinese). doi: 10.19693/j.issn.1673-3185.01185
|
[16] |
ZHOU M H, FENG Y, XUE C, et al. Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators[J]. Neurocomputing, 2020, 416: 143–151. doi: 10.1016/j.neucom.2019.04.087
|
[17] |
FEI J T, WANG H. Recurrent neural network fractional-order sliding mode control of dynamic systems[J]. Journal of the Franklin Institute, 2020, 357(8): 4574–4591. doi: 10.1016/j.jfranklin.2020.01.050
|
[18] |
MODIRI A, MOBAYEN S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems[J]. ISA Transactions, 2020, 105: 33–50. doi: 10.1016/j.isatra.2020.05.039
|
[19] |
HAN S. Fractional-order command filtered backstepping sliding mode control with fractional-order nonlinear disturbance observer for nonlinear systems[J]. Journal of the Franklin Institute, 2020, 357(11): 6760–6776. doi: 10.1016/j.jfranklin.2020.04.055
|
[20] |
金鸿章, 姚绪梁. 船舶控制原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2013.
JIN H Z, YAO X L. The principle of ship control[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2013 (in Chinese).
|
[21] |
PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego: Academic Press, 1998.
|
[22] |
MONJE C A, CHEN Y O, VINAGRE B M. Fractional-order systems and controls: fundamentals and applications[M]. New York: Springer, 2010.
|
[1] | YAN Zhaokun, YANG Guanyu, WANG Hongdong. Adaptive surge control of variable-mass unmanned surface vehicle based on super-twisting sliding mode observation[J]. Chinese Journal of Ship Research, 2025, 20(1): 247-262. DOI: 10.19693/j.issn.1673-3185.03517 |
[2] | DING Zhilong, WANG Peng, WANG Yonggang, SU Boqun. Sliding mode controller with improved AGA for supercharged boiler drum water level control[J]. Chinese Journal of Ship Research, 2024, 19(2): 181-186. DOI: 10.19693/j.issn.1673-3185.03228 |
[3] | ZHANG Xianku, HONG Haochen. Design of ship course keeping controller based on zero-order holder and nonlinear modification[J]. Chinese Journal of Ship Research, 2024, 19(1): 84-89. DOI: 10.19693/j.issn.1673-3185.03036 |
[4] | LIU Jiahao, LIU Zhiquan. Finite-time filtered backstepping sliding mode adaptive control for rudder roll stabilization[J]. Chinese Journal of Ship Research, 2023, 18(6): 97-105. DOI: 10.19693/j.issn.1673-3185.03137 |
[5] | GUO Wenxuan, TANG Guoyuan, ZHAO Fan, WANG Quanbin, SUN Jianglong, QIAO Yu. Adaptive cascade tracking control of USV for recovery task[J]. Chinese Journal of Ship Research, 2023, 18(5): 111-120. DOI: 10.19693/j.issn.1673-3185.02882 |
[6] | WANG Wenxin, LIU Shang, ZHANG Guoqing, ZHANG Xianku. Robust adaptive course-keeping control of under-actuated ships with the rudder failure[J]. Chinese Journal of Ship Research, 2023, 18(1): 116-123. DOI: 10.19693/j.issn.1673-3185.02525 |
[7] | Hu Jianzhang, Tang Guoyuan, Wang Jianjun, Xie De. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1-7. DOI: 10.19693/j.issn.1673-3185.01521 |
[8] | Zhao Zhiping, Zhang Qiang. Adaptive self-regulation PID tracking control for the ship course[J]. Chinese Journal of Ship Research, 2019, 14(3): 145-151. DOI: 10.19693/j.issn.1673-3185.01305 |
[9] | ZHAO Rui, XU Jian, WANG Miao, XIANG Xianbo, XU Guohua. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87-93. DOI: 10.19693/j.issn.1673-3185.01185 |
[10] | ZHANG Yongsheng, ZHAO Shuqin. 船用蒸汽发生器水位的模糊自适应PID控制[J]. Chinese Journal of Ship Research, 2013, 8(3): 106-109. DOI: 10.3969/j.issn.1673-3185.2013.03.020 |
1. |
董微微. 高速大舵角下回转舰船横摇力矩波动自动控制. 舰船科学技术. 2024(04): 47-50 .
![]() | |
2. |
李国帅,张显库,张安超. 智能船舶靠泊技术研究热点与趋势. 中国舰船研究. 2024(01): 3-14 .
![]() | |
3. |
齐雪,石满红,董姗姗,潘花. 基于神经网络的零航速减摇鳍模型参考自适应控制设计. 安徽科技学院学报. 2023(04): 79-86 .
![]() | |
4. |
刘嘉昊,刘志全. 有限时间滤波反步滑模自适应舵减摇控制. 中国舰船研究. 2023(06): 97-105 .
![]() | |
5. |
殷秋雯,罗春艳,孙惠. 双体清污船综合减摇自适应控制方法. 电子设计工程. 2022(07): 96-99+104 .
![]() |