Citation: | GUO W X, TANG G Y, ZHAO F, et al. Adaptive cascade tracking control of USV for recovery task[J]. Chinese Journal of Ship Research, 2023, 18(5): 111–120. DOI: 10.19693/j.issn.1673-3185.02882 |
[1] |
彭艳, 葛磊, 李小毛, 等. 无人水面艇研究现状与发展趋势[J]. 上海大学学报(自然科学版), 2019, 25(5): 645–654.
PENG Y, GE L, LI X M, et al. Research status and development trend of unmanned surface vehicle[J]. Journal of Shanghai University (Natural Science Edition), 2019, 25(5): 645–654 (in Chinese).
|
[2] |
张晓东, 刘世亮, 刘宇, 等. 无人水面艇收放技术发展趋势探讨[J]. 中国舰船研究, 2018, 13(6): 50–57. doi: 10.19693/j.issn.1673-3185.01258
ZHANG X D, LIU S L, LIU Y, et al. Review on development trend of launch and recovery technology for USV[J]. Chinese Journal of Ship Research, 2018, 13(6): 50–57 (in Chinese). doi: 10.19693/j.issn.1673-3185.01258
|
[3] |
吴文涛, 彭周华, 王丹, 等. 基于扩张状态观测器的双桨推进无人艇抗干扰目标跟踪控制[J]. 中国舰船研究, 2021, 16(1): 128–135. doi: 10.19693/j.issn.1673-3185.01665
WU W T, PENG Z H, WANG D, et al. ESO based anti-disturbance target tracking control for twin-screw unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2021, 16(1): 128–135 (in Chinese). doi: 10.19693/j.issn.1673-3185.01665
|
[4] |
朱骋, 庄佳园, 张磊, 等. 基于改进视线法的欠驱动无人艇路径跟踪[J]. 哈尔滨工程大学学报, 2020, 41(6): 784–791. doi: 10.11990/jheu.201905119
ZHU C, ZHUANG J Y, ZHANG L, et al. Path following of underactuated unmanned surface vehicles based on the improved line-of-sight guidance strategy[J]. Journal of Harbin Engineering University, 2020, 41(6): 784–791 (in Chinese). doi: 10.11990/jheu.201905119
|
[5] |
LIN M Z, ZHANG Z Q, PANG Y D, et al. Underactuated USV path following mechanism based on the cascade method[J]. Scientific Reports, 2022, 12(1): 1461. doi: 10.1038/s41598-022-05456-9
|
[6] |
XU H T, OLIVEIRA P, SOARES C G. L1 adaptive backstepping control for path-following of underactuated marine surface ships[J]. European Journal of Control, 2021, 58: 357–372. doi: 10.1016/j.ejcon.2020.08.003
|
[7] |
PARK B S, KWON J W, KIM H. Neural network-based output feedback control for reference tracking of underactuated surface vessels[J]. Automatica, 2017, 77: 353–359. doi: 10.1016/j.automatica.2016.11.024
|
[8] |
FARAMIN M, GOUDARZI R H, MALEKI A. Track-keeping observer-based robust adaptive control of an unmanned surface vessel by applying a 4-DOF maneuvering model[J]. Ocean Engineering, 2019, 183: 11–23. doi: 10.1016/j.oceaneng.2019.04.051
|
[9] |
HERRERA L, RODRÍGUEZ-LIÑÁN M C, CLEMENTE E, et al. Evolved Extended Kalman Filter for first-order dynamical systems with unknown measurements noise covariance[J]. Applied Soft Computing, 2022, 115: 108174. doi: 10.1016/j.asoc.2021.108174
|
[10] |
焦文龙. 欠驱动AUV机动目标跟踪控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
JIAO W L. Research on underactuated AUV maneuvering target tracking control[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
|
[11] |
刘松波. GKF算法下对机动目标多步预测的误差分析[J]. 沈阳航空工业学院学报, 2008, 25(3): 64–67.
LIU S B. GKF-based error analysis of multi-step forecast for maneuvering target[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2008, 25(3): 64–67 (in Chinese).
|
[12] |
BREIVIK M, FOSSEN T I. Applying missile guidance concepts to motion control of marine craft[J]. IFAC Proceedings Volumes, 2007, 40(17): 349–354. doi: 10.3182/20070919-3-HR-3904.00061
|
[13] |
BREIVIK M, FOSSEN T I. Guidance laws for planar motion control[C]//47th IEEE Conference on Decision & Control. Cancun: IEEE, 2008: 570−577.
|
[14] |
胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7. doi: 10.19693/j.issn.1673-3185.01521
HU J Z, TANG G Y, WANG J J, et al. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01521
|
[15] |
SI Y J, SONG S M. Adaptive reaching law based three-dimensional finite-time guidance law against maneuvering targets with input saturation[J]. Aerospace Science and Technology, 2017, 70: 198–210. doi: 10.1016/j.ast.2017.08.006
|