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Abstract: [Objectives] The toroidal propeller can effectively reduce tip vortex leakage due to its unique shape,
which is beneficial for reducing hydrodynamic noise and improving propulsion efficiency. However, its complex
shape also makes it challenging to model its geometric shape using conventional mathematical expression methods.
Therefore, it is necessary to study the mathematical expression of the toroidal propeller. [Methods] First, the
structural characteristics and advantages of the toroidal propeller are introduced in detail. Next, by referring to the
mathematical expression of conventional propeller geometry, geometric parameters such as axis span, lateral angle,
roll angle and vertical angle are introduced, and a detailed 3D coordinate formula for the toroidal propeller is derived
by distributing the geometric parameters in the axis span direction, thereby establishing the mathematical expression
method for toroidal propellers. Finally, by taking the offset of a certain toroidal propeller as an example, the
feasibility of the proposed mathematical expression method for toroidal propellers is verified. [Results] The results
show that the proposed method can smoothly establish the geometric shape of a toroidal propeller. [Conclusions]
The proposed method can facilitate the rapid 3D modeling of toroidal propellers, laying a solid foundation for further
research on the physical characteristics and scientific problems associated with toroidal propellers.
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meet the operational demands of ships and
underwater vehicles in complex and variable marine
environments. In recent years, the emergence of
new, efficient, and low-noise toroidal propellers has
attracted widespread attention. The unique external

0 Introduction

The implementation of the national strategy
"carbon peaking and carbon neutrality” and the new
regulations of energy conservation and emissions

reduction issued by the International Maritime shape design of the toroidal propeller can reduce
Organization (IMO) has added unprecedented vortex shedding from the blade tips, thereby
urgency to the demand for developing energy- improving propulsion efficiency and lowering

saving and emission-reducing vessels as well as
actively promoting green shipping. In addition, the

hydrodynamic noise. However, technical challenges
and development bottlenecks also stem from its

strategic transformation of the navy has put forward
higher requirements on the overall performance of
ships and underwater armament to support the
modernization and upgrading of the naval equip-
ment of China. The progressiveness of underwater
propulsor technology directly determines the
performance of ships and underwater vehicles in
speed, endurance, and stealth. Conventional
propellers, which are limited in the upgrading of
propulsion capacity and noise control, can hardly
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special shape. The complex and variable configura-
tion of the toroidal propeller can hardly be modeled
and designed using the mathematical expression
methods for conventional propellers, which inhibits
the industry from conducting in-depth fundamental
research and is not conducive to the design and
development of toroidal propellers. Therefore,
further research should be conducted on the
mathematical expression of the geometric shape of
the new toroidal propeller.
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For centuries, conventional propellers have been
the main propulsion methods in the air and under-
water. However, conventional propellers still have
some unresolved drawbacks, such as the bottlenecks
in improving propulsion efficiency and reducing
hydrodynamic noise. In recent years, toroidal
propellers have garnered widespread attention due
to their potential to enhance propulsion efficiency
and reduce vibration and noise, with research and
applications in the maritime field already underway
abroad. In 2013, Sharrow Marine in the United
States filed a patent for their toroidal propeller ™
and developed a marine propulsor, claiming that it
could improve the propulsion efficiency of vessels
and reduce noise 2. In 2017, the Massachusetts
Institute of Technology (MIT) updated it and
applied for another patent, which was approved in
2020 Bl However, toroidal propellers have rarely
been explored in China.

A reliable modeling method is a prerequisite for
researching scientific issues related to toroidal
propellers. However, the mathematical expression
and modeling methods for the geometric shape of
toroidal propellers are still unavailable, which
limits the study and development of this equipment.
To achieve breakthroughs in the key technologies
for geometrically modeling toroidal propellers, the
authors intend to study the mathematical expression
methods for toroidal propellers. For this purpose,
they start by detailing the structural characteristics
and advantages of toroidal propellers. Then,
drawing on the mathematical expression of the
geometric shape of conventional propellers, they
propose a mathematical expression method for the
geometric shape of toroidal propellers, thereby
rapidly and accurately modeling toroidal propellers
three-dimensionally and providing a foundation for
subsequent research on their physical properties and
mechanisms of action.

1 Overview of toroidal propellers

The toroidal propeller consists of blades and a
hub, with each blade being a closed annular
structure that includes a front section, a transition
section, and a rear section (Fig. 1). The transition
section connecting the front and rear sections
allows the blade to smoothly transition from the
front section to the rear section. Despite no clear
boundaries between these three sections on the
blades, their positions can be roughly determined
by observing the characteristics of the cure of roll

angle distribution along the axial span. Generally,
the roll angle increases slowly in the front and rear
sections and rapidly in the transition section [, The
point where the front section meets the hub is
defined as the root of the front section, where the
roll angle is 0°; the point where the rear section
connects to the hub is defined as the root of the rear
section, where the roll angle is 180°. Setting the roll
angles at the front and rear roots to 0° and 180°,
respectively, ensures that the points on the blade
section are all located on the coaxial cylindrical
surfaces with equal radii. The profile in the
transition section with a radius of R is referred to as
the tip, where the roll angle is approximately 90°.

Top
Transition section (with a radius of R and a roll
angle of approximately 90°)

P __—Trailing edge
. — Rear section

/

Leading edge
\

Front section
Front root

(with a roll _Rear root
angle of 0°) (with a roll angle
of 180°)
Hub

Direction of rotation

Fig. 1 Schematic diagram of the toroidal propeller

An observation of the characteristics of the
geometric shape of the toroidal propeller reveals
that it combines the advantages of the tandem
propeller and the contracted and loaded tip (CLT)
propeller.

A tandem propeller is a type of propulsor that has
two conventionally shaped propellers mounted on
the same shaft and rotating in the same direction
simultaneously. The arrangement of one propeller
in the front and the other in the rear with a particular
interval places the rear propeller in the wake of the
front one and thus gives it a higher advance speed.
Therefore, the rear propeller typically has a larger
pitch than that of the front one to enhance
propulsion efficiency. For vessels with restricted
diameters or excessive loads, tandem propellers can
be used to conveniently increase the blade area,
thereby reducing the load per unit area on the blade
surface ™. Consequently, the application of tandem
propellers is beneficial for improving efficiency and
avoiding or mitigating noise, cavitation, and vibration.
The overall performance of tandem propellers is
influenced not only by the same geometric para-
meters_as those of conventional propellers but also
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by the axial space (the axial span between the front
and rear propeller discs) and the blade spacing
angle (the angle by which the front blades lead the
adjacent rear ones) . Likewise, the propulsion
performance of toroidal propellers is affected by the
distance and stagger angle between the front and
rear sections since the two sections are similar to
the front and rear propellers of a tandem propeller.

For an airfoil with a finite span, a vortex that
rolls inward, known as a tip vortex, usually forms at
the ends of the wings due to the pressure difference
between the upper and lower surfaces of the wings [©.
Tip vortices degrade the propulsion efficiency and
noise performance of vessels, consequently limiting
ship designers' choices of propellers' geometric
parameters. Tip vortex suppression is thus one of the
most common problems and challenges facing
propeller designers. CLT propellers, also known as
tip-loaded propellers, are a type of propeller with
end plates at the tips of the blades. The end plates
typically bend either forward or backward to
eliminate or reduce the vortex shedding from the
blade tips, thereby significantly lowering ship noise
and excitation forces as well as improving
propulsion efficiency [l For this reason, the shape
of the ends directly affects the propulsion
performance of the vessel and the control of tip
vortices. The transition section of toroidal propeller
blades can approximately be regarded as a part
composed of the forward-and backward-bending
end plates at the blade tips of the CLT propeller;
however, the smooth transition issue also deserves
proper consideration, and the shape of the transition
section also influences propulsion performance and
tip vortex control.

The toroidal propeller is a quieter and more
efficient propeller design. Different from conven-
tional propeller blades, each toroidal propeller
blade curves from the front root to the rear root,
constituting a closed annular structure. This enclosed
design significantly reduces vortices and the
rotational resistance generated by the transition
section, thereby improving propulsion efficiency
and reducing noise. Compared with conventional
propellers, the toroidal propeller distributes the
generated vortices across the entire blade rather
than just in the transition section, ultimately
significantly reducing tip cavitation and minimizing
the hydrodynamic noise in the cases with and
without cavities. Additionally, the annular shape of
the toroidal propeller iincreases: its stiffness. and

stability, which is conducive to enhancing the
overall strength. The Lincoln Laboratory of MIT
and Sharrow Marine conducted research based on
this concept and designed several marine toroidal
propellers collaboratively [, including the Sharrow
MX™, Sharrow CX-1™, and Sharrow NX™ (Fig. 2).

(¢) Sharrow NX™ .
Fig. 2 Marine toroidal propellers from Sharrow Marine (€

2  Mathematical expression of
geometric shape of conven-
tional propeller

Currently, a wealth of literature is available for
mathematical expression methods for the geometric
parameters and shapes of conventional pro-
pellerst1, Only the reference curves for their
geometric features and coordinate transformation
equations will be discussed here. Assuming that the
propeller rotates in place, the rotating coordinate
system fixed to the propeller is defined as (x, r, 6).
In this coordinate system, the x-axis coincides with
the propeller axis, with the downstream direction as
positive; r is the radial coordinate, with the outward
direction as positive; 6 is the coordinate in the
angular direction, with the direction determined by
the right-hand rule around the x-axis as positive
(Fig. 3) 24,

Leading
edge

Blade reference
line

Traling edge

(a) Coordinate system
Fig. 3 Coordinate system and reference line for conventional
propeller &4

(b) Reference line
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The reference line for the propeller, defined as
the radial line through the midpoint of the chord
line of the blade root profile, is fixed to the
propeller. A plane projected from this reference line
and perpendicular to the x-axis is plotted, and the
intersection point of this plane with the x-axis is
then obtained and designated as the origin of
coordinates. The blade reference plane is composed
of constant-pitch reference helices distributed along
the r-direction. The intersection line between the
plane at & = 0 and the reference plane can be
expressed as follows:

x = x,.(r)

r=r (1)

6=0
where X, is the rake at the blade section. This curve
is referred to as the blade generatrix and is used to
depict the rake of the blade.

During the modeling of the propeller, a blade
reference line must be defined so that other
parameters can be arranged around it. The blade
reference line is generally expressed as the
following Eq. (2):

x=x(r)
r=r 2)
0="6,(r)
where 6 is the distribution of the skew angle; x; is
the total rake consisted of two parts: the rake of the
blade itself, denoted as x,, and that induced by the
skew, and x; can be expressed as follows:
xr(r) = x, (1) + 16, (r)tanB(r) 3)
where S is the geometric pitch angle at a specific
radius, indicating the inclination degree of the blade
section at that radius. The relationships among the
above reference lines can be found in Reference [11].

The position of a blade section in the three-
dimensional space can be roughly depicted once the
blade reference line is determined. However,
additional parameters are required to determine the
shape of the blade section, specifically its chord
length b and form. The form of the profile can be
calculated as the distances y, from points on the
blade section (including the coordinate points on
the upper and lower surfaces of the profile) to the
chord line, as shown in Fig. 4.

Typically, the skew shape of a propeller blade
can be directly represented by the skew angle 6, or
by the distance c, from the leading edge to the
generatrix of the blade section. If the former way is

chosen, each point on the blade section at a radius r
in the cylindrical coordinate system o-xr@ can be
expressed as follows:

b . ylv
X = Xy +(—§ + s)smﬂ—( ]cos,B

Ve

r=r (4)
0=0,+—
-

1 b Yol .
(—; +s)cos/3’+( ‘ )smﬁ]
~ Yi

where s is the chordwise distance from the point on
the blade section to the leading edge, while y, and y;
are the distances from points on the blade back and
blade face to the chord line, respectively.

]

= il
-

A

PN

A

-
>

A A
Fig. 4 Expression of blade section of conventional propeller

In the Cartesian coordinate system o-xyz, the
coordinates of a point on the profile can be
expressed as follows:

(2o ()
Xx=xr+{—z+s|sinf— cosf

2 Ye 5
v=rcost ()
z=rsinf

Egs. (4) - (5) indicate that for a conventional
propeller with given geometric elements (including
its diameter, hub-radius ratio, number of blades,
and its chord length, pitch, skew, backward leaning,
and blade section distributed radially), the
coordinate points on the propeller surface in the
three-dimensional space can be determined by
mathematical equations for
coordinates (Eqgs. (4)-(5)). Specifically, the coordi-
nates of points on the blade back can be calculated
by substituting y, into the equations, while those of
points on the blade face can be obtained by
substituting y; into the equations.

If the skew of the propeller is represented by the
distance c,, the points on the blade section at a
radius r in the cylindrical coordinate system o-xrf
can be expressed as follows:

three-dimensional
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X=X,+(—c; +s)sinS— (yb} cosf3
Vi
r=r (6)
6= l [(—c, +s)cosfp+ (‘yb) sinﬁ}
r i

In the Cartesian coordinate system o-xyz, the
coordinates of a point on the blade section can be
expressed as follows:

¥
xX=x,+(—c;+§)sing— ( b)cosﬁ
Yt
7
v=rcosf (7)
z=rsinf

A comparison between Eg. (4) and Eqg. (6)
suggests that the distance ¢, from the leading edge
of the blade section to the generatrix can be
obtained as follows:

b 1o,

ar 2 cos‘ﬁ )

where the direction pointing from the leading
edge to the trailing edge of the blade section is
taken as positive for c,. In Fig. 4, the distance c,
from the leading edge to the generatrix points in the
negative direction, indicating a negative c;.

For a conventional propeller with given
geometric elements (including its diameter, hub-
radius ratio, number of blades, and its chord length,
pitch, backward rake, distance from the leading
edge to the generatrix, and the blade section
distributed radially), the coordinate points on the
propeller surface in the three-dimensional space can
be determined using Egs. (6)-(7), the mathematical
equations for three-dimensional coordinates [*2,

The above process can be implemented to
determine the blade reference line first, whereby the
positions of the blade sections at various radii in the
three-dimensional space can be identified. Then, the
blade section at each radius can be developed along
the reference line to obtain the coordinates of all the
points on the blade back and blade face in the three-
dimensional space for the sections at different radii.
This process completes the transformation of the
propeller's offset parameters into coordinate points
in the three-dimensional space through mathema-
tical expressions.

3  Mathematical expression of
geometric shape of toroidal
propeller

The geometric offset parameters of conventional

propellers include chord length, pitch, rake, skew
(or the distance from the leading edge to the
generatrix), as well as the camber and thickness of
the blade airfoil sections. Each of these parameters
varies with the radius, namely that they are
functionally related to the radius. In comparison,
the blades of a toroidal propeller are closed
structures. When they are intersected by the
cylindrical surface coaxial with the toroidal
propeller, two blade sections are obtained. In this
case, the same radius r corresponds to two
geometric parametric variables in terms of the
functional relationship. Therefore, the geometric
offset parameters of a toroidal propeller can hardly
be described as radially distributed.

To smoothly express the geometric shape of the
toroidal propeller, the author introduced the concept
of the axial span (Fig. 5). The position of the blade
section at the front root was taken as the starting
point, and the axial span | was then defined as the
distance from each point on the reference line for
the toroidal propeller to this starting point. The
axial span between the front root and the rear root
was defined as the total axial span L. In this case,
each plane that covered the axial span | and was
perpendicular to the x-axis would intersect with the
reference line for the toroidal propeller at only one
point. The geometric offset parameters can be set as
functions that vary with the axial span to ensure
their smooth curves of distribution along the axial
span. In addition to the offset parameters required
by the expression of conventional propellers, more
parameters such as the lateral angle ¢, roll angle v,
and vertical angle a should also be introduced to
express the toroidal propeller, which will be
detailed later.

Reference line
for toroidal

Fig. 5 Axis span and total axis span of toroidal propeller

A blade reference line should also be defined in
the modeling of the toroidal propeller, as in the case
of _conventional propellers. Each 'blade section
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develops around its blade reference line to form the
three-dimensional model of the toroidal propeller.
The blade reference line should be determined
before mathematically expressing the geometric
shape of the toroidal propeller. Assuming that the
toroidal propeller rotates in place, the rotating
coordinate system fixed on the toroidal propeller
was denoted as (x, r, #), as shown in Fig. 6. The
intersection point of the radial line through the
midpoint of the chord line of the front root profile
with the x-axis was taken as the origin of the
coordinates.

Fig. 6 Definition of coordinate system for toroidal propeller

For conventional propellers, the radial line
through the midpoint of the chord line of the blade
root profile is taken as the reference line, which is
equivalent to the line connecting the points where
blade sections at various radii are under the
condition of no rake or skew. Similarly, in the case
of the toroidal propeller, the curve formed as the
radius varies with the axial span on the plane at 9 =
0 can be used as the reference line since the toroidal
propeller consists of closed annular structures. The
reference line for the toroidal propeller can thus be
expressed as follows:
x=1
r=r(l) 9)
0=0

where r; is the radius at the axial span I.

The axial span | varies in the axial direction and
| € [0, L], and the curve varying with the axial span,
namely, the reference line for the toroidal propeller,
can be obtained from Eq. (9). Fig. 7 shows the front
view and side view of the reference line for the
toroidal propeller.

To increase or reduce the stagger angle between
the front and rear sections of the toroidal propeller
blades, the authors introduced the lateral angle ¢(1),
which was defined as the angle by which the blade
section rotates circumferentially. This angle can_be

. Reference line for
. toroidal propeller

/

| | Reference line for
| ¢ | toroidal propeller

(a) Side view

(b) Front view

Fig. 7 Reference line of toroidal propeller

represented by the angle between the radial line at
the axial span | in the projected profile and the
reference line for the toroidal propeller (Fig. 8),
similar to the blade spacing angle between the front
and rear blades of a tandem propeller. The front and
rear sections of a toroidal propeller blade are
separated by a particular gap, and the rear section is
thus located in the wake of the front one. As a
result, its advance speed is higher than that of the
front section. Proper lateral angles should be chosen
for the front and rear sections to achieve optimal
propulsion efficiency matching. Generally, the
lateral angles in the front and rear sections of a
toroidal propeller are opposite, namely that the
front section has a negative lateral angle while the
rear section has a positive one. The transition
section has a lateral angle transitioning from
positive to negative. Fig. 8 illustrates an example
where the lateral angle increases the stagger angle
between the front and rear sections.

Reference line Reference line

foprr:Joprglilcej;riI i for toroidal
f Blade propeller
| ”' generatrix Eront

Rear - —~ section
section PN,

(a) Lateral angle out of
consideration

Fig. 8 Reference lines for toroidal propeller before and after
lateral angle is considered

(b) Lateral angle in
consideration

In the plane at # = 0, the curve obtained by taking
into consideration the effects of the rake x,(l) and
the lateral angle ¢(I) on the basis of the reference
line for the toroidal propeller was defined as the
generatrix of the blade. Then, the generatrix of a
toroidal propeller blade can be represented by
Eq. (10) as follows:

x=1+x()
r=r(l) (10)
6 =o()
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where ¥, is the rake at the axis span I.

The curve varying with the axial span, namely,
the blade generatrix of the toroidal propeller, can be
obtained by Eqg. (10) as the axial span | varies
axially and | € [0, L] (Fig. 9).

Reference
line for
toroidal Reference
propeller Blade i\ linefor
generatrix { i __—" toroidal
Blade = ™= i/ | propeller
generatrix o

>/

(a) Side view

(b) Front view

Fig. 9 Blade generatrix of toroidal propeller

The midpoint of the chord line of the blade
section at the axial span | can be expressed as
follows:

x=1+xp()

r=r/l) (11)

O=p)+6,()
where 6,(1) is the skew of the blade. The coordinate
X in Eq. (11) is the sum of the axial span and the
total rake x;, namely that the blade sections at
various axial spans are translated forward or
backward along the x-axis relative to the propeller
reference line. Similar to that in the case of
conventional propellers, the total rake x{(l) is
composed of two parts and can be expressed as
follows:

xr (D) = x;, (D + ro (D tanG () (12)

where ro,(I)tang(l) is the rake caused by the skew,
referred to as the skew-induced axial displacement.
Noteworthily, the skew 6,(l) and the lateral angle
o(l) have different influences. To be specific, (1)
causes the blade section to rotate circumferentially
and induces a rake along the axial direction
simultaneously, while ¢(l) only causes the blade
section to rotate circumferentially.

The curve varying with the axial span can be
obtained by Eq. (12) as the axial span | varies in the
axial direction and | € [0, L]. This curve is defined
as the blade reference line for the toroidal propeller,
as shown in Fig. 10.

Similar to the mathematical expression method
for conventional propellers, the mathematical
expressions of the three-dimensional coordinates of
the toroidal propeller can be obtained by
determining the blade reference line first and then
developing the blade section at each axial span |

Reference line

i Blade
for toroidal :
propeller Blade generatrix
B reference \ A Reference line
pre line Blade : for toroidal
reference I"f/ propeller

Blade Ilne“‘-w \
generatrix

(a) Side view (b) Front view

Fig. 10 Blade reference line for toroidal propeller

along this reference line. In the cylindrical coor-
dinate system o-xr@, the blade section at each axial
span | of the toroidal propeller can first be developed
around the blade reference line in the same manner
as the blade sections of conventional propellers are
processed. Then, preliminary mathematical expres-
sions of the three-dimensional coordinates of the
toroidal propeller can be obtained as follows:
Yo

x:l+xT+(—§+s)sinﬁ—( Vt )cosﬁ
r=1 (13)
(—§+s)cosﬁ+( Vl; )smﬁ

However, Eq. (13) still has a problem when it is
used to express the geometric shape of the toroidal
propeller: The total rake at the blade tip varies
widely, which causes the distribution of the
thickness of the transition section to differ
significantly from that of the actual blade section
(Fig. 11). Fig. 11 reveals that due to the excessive
change in the curvature of the total rake in the
transition section, the blade sections in this section
becomes very thin, and the blade face even
intersects with the blade back in the transition
section (r = R), resulting in an intersection surface.
Since the toroidal propeller is composed of closed
structures, drastic changes in the total rake are
inevitably observed at the blade tips, resulting in
discrepancies between the thickness of the blade
sections at these points and that in the actual

1
=p+6,+—
r

Blade R -

reference

/ line
7 Thickness Ime

A 71 Blade
\ g = reference
line

X

(a) Blade reference line (b) Thickness line

Fig. 11 . Thickness of blade section before rotation
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situation. Therefore, Eq. (13) alone is insufficient to
fully and accurately express the geometric shape of
the toroidal propeller.

The authors introduced the concept of the roll
angle to ensure that each blade section of the
toroidal propeller accurately reflects the actual
thickness distribution. Its geometric definition is the
angle between the tangent line to the blade
reference line at the position of the blade section
and the radial straight line, namely, the rotation
angle of the blade section from a horizontal position
to a position perpendicular to the blade reference
line. Owing to the introduction of the blade section
at each radius, a specified rotation angle can be
freely chosen to ensure that the thickness of the
blade tip is approximately equal to the thickness of
the blade section. Additionally, the roll angle varies
continuously among the front section, transition
section, and rear section within the range of 0° -
180° to ensure the smoothness of the blades. The
variation in the roll angle should be in tandem with
the change in the total rake. In the front and rear
sections of the blades, the roll angle does not need
to vary widely due to the small change in the total
rake. In the transition section, however, the
variation in the roll angle should also be large due
to the considerable change in the total rake. Fig. 12
shows the thickness lines of the toroidal propeller
after the blade section is adjusted by the roll angle.
Compared with the thickness lines in Fig. 11, the
introduction of the roll angle enables the blade
sections at different radii to reflect the thickness
distribution of the blade more accurately.

.
LR vt
-
: ; . \
Wy, SIngs . p
/ Blade section o 2
. ~before rolling L(*9\ /
Yu ; ~_  Thickness 7
/ . lin
‘Blade section €
/ after rolling Ll AN
Blade
—4— —— reference
line
X

Fig. 12 Thickness of blade section after rotation

In the following part, the authors will detail how
the roll angle is represented in the mathematical
expressions of the three-dimensional coordinates of
the toroidal propeller.

Fig. 12 can explain the change in the radial
coordinate r in the mathematical expressions in
Eqg. (13). In Fig. 12, the fine black lines represent
the position of the blade section at each axial span |

before the blade section is adjusted by the roll
angle, and all coordinate points on a specific blade
section have a radius satisfying r = r,. However,
when the blade rotates to the specified roll angle,
the radial coordinate r of points on the blade back
and blade face increases or decreases by -y,siny
and -ysiny, respectively; namely that the radial
coordinate r in Eqg. (13) will change from r = r, to
r=r - (Ypy)siny.

Fig. 13 shows the shapes of the blade section in
the plane x- & before and after the roll angle is
considered. The cyan-green arcs in the figure are
the contour of the blade section after it is adjusted
by the roll angle. The changes in the axial
coordinate x and the coordinate in the angular
direction denoted as @ in the mathematical
expressions in Eq. (13) can be explained by Fig. 13.
From the perspective of the plane x- 6, Fig. 13
reveals that on the blade section at each axial span
I, the coordinates of the points on the blade back
and blade face perpendicular to the chord direction
before rotation are y, and y;, respectively. After the
blade section is rotated to the specified roll angle,
their coordinates change to y,cosy and y;Ccosy,
respectively. This means that the (y,y;)" term in the
calculation equations for x and ¢ in Eq. (13)

changes to [(yb yo)' COW].

(Y

r

Fig. 13 Shapes of blade section before and after rolling

Therefore, in the cylindrical coordinate system
0-xr@, the mathematical expressions of the three-
dimensional coordinates in Eq. (13) will change to
the following ones after the roll angle is added to
the blade section at each axial span I:

( ;lf’ )cosW]cosﬁ

sinﬁ}

(14)

b
x:l+xT+(—§+s)sinﬁ—

r:rl—( ‘Yb )sinzp

Yi

b=+, +1 b s +[ yh
=p+6 p 3 slcosf (yf )cosmp
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In the absence of the roll angle, the angle of
attack of the blade section is only influenced by the
pitch. The introduction of the roll angle poses a
problem, namely, the varying inflow conditions of
the blade section at each axial span | on the blade
(Fig. 14). In the figure, w is the rotational angular
velocity of the blade section, and wr represents the
rotational linear velocity of the blade section. The
coordinate points on the blade sections at the front
and rear roots of the blade are located on the section
with the same radius. Therefore, the angle of attack
of the inflow is mainly depend on the pitch at these
points. In the vicinity of the transition section
(where the roll angle is approximately 90°), the
angle of attack of the inflow relies primarily on the
angle between the chord line of the blade section on
the plane r- 6 and the direction of rotation of the
blade section. As for blade sections at other axial
spans, the angle of attack of the inflow is influenced
not only by the pitch but also by the angle between
the chord line and the direction of rotation.

Front and rear roots  x

Fig. 14 Influence on angle of attack of inflow at different parts

of toroidal propeller

The authors also introduced the vertical angle o
to better adjust the angle of attack of the inflow on
the blade sections so that the toroidal propeller can
better adapt to the working environment. The
geometric definition of the vertical angle is the
angle between the chord line of the blade section
and the rotation tangent (Fig. 15). The blade section
can be lifted or lowered relative to the rotation
tangent by adjusting the vertical angle. Adding the
vertical angle to the transition section allows the
fluid to be drawn into the interior of the blade
"ring" but increases rotation resistance. Additionally,
the vertical angle in the transition section also
causes the fluid to deviate from the direction of the
advance velocity. Therefore, the vertical angle of
the rotating blade should be set properly. The
vertical . angle typically has three patterns of

distribution along the axial span: 1) All blade
sections have a vertical angle set to 0°; 2) The
vertical angle is positive in the front and transition
sections and negative in the rear section; 3) All
blade sections have a positive vertical angle, but the
vertical angle is larger in the front and transition
sections than in the rear section.

Fig. 15 Vertical angle of toroidal propeller

The representation of the vertical angle in the
mathematical expressions of the three-dimensional
coordinates of the toroidal propeller will be detailed
in the following part.

The variation in the radial coordinate r in the
mathematical expressions in Eq. (13) can be
explained by Fig. 15. In the figure, the blue dashed
line denotes the radius of the blade section at each
axial span | before rolling, and r = r,. When the
blade section is rotated to the specified roll angle, it
will be lifted or lowered in the direction of rotation,
resulting in an increase or decrease in the radius r
by —(-c, + s)sina, namely that the radial coordinate
rin Eq. (13) changes fromr =r, tor = r—(-¢c, +9)
sina.

Fig. 16 shows the shapes of the blade section on
the plane x- 6 before and after the vertical angle is
applied. In this figure, the cyan-green arcs are the
contour of the blade section after it is adjusted by
the vertical angle. The changes in the axial
coordinate x and the coordinate in the angular
direction denoted as 6 in the mathematical
expressions in Eq. (13) can be explained by Fig. 16.
From the perspective of the plane x-0, the length of
the blade section at each axial span | in the chord
line direction is —b/2+ s before rotation. However, it
becomes (—b/2+ s)cosa after the blade section is
rotated to the specified vertical angle, namely that
the term (-b/2+ s) in the calculation equations for x
and 6.in Eq. (13) changes to [(=b/2+ s) cosal].
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Fig. 16 Contour of blade section before and after vertical
rotation

Therefore, in the cylindrical coordinate system
o—-xr#, the mathematical expressions of the three-
dimensional coordinates in Eq. (13) change to the
following ones after the vertical angle is applied to
the blade section at each axial span I:

—9 + s|cosa|sinf — o cosf
) Ve

[0
r=r- —§+s sina

0=go+6}s+%{[(—g+s)cosa/]cos/3+( ;1: )sinﬁ}

(15)
In summary, the mathematical expressions of the
three-dimensional coordinate points on the blade
section at each axial span | in the cylindrical
coordinate system o-xr® are as follows after the
axial span, the lateral angle, the roll angle, and the
vertical angle are introduced into the case of the
toroidal propeller:

(—g+s)cosa/]sinﬁ—[( 1}: )comﬁ]cosﬁ
b . Yo\
r:r,—(—§+s)sma—( Ve )Slmﬁ

1 b
O0=¢+6,+ —{ (—5 + s)cosa']cosﬁ+
r

(3 oo
(16)

The three-dimensional coordinates of points on
the blade section at each axial span | of the toroidal
propeller in the Cartesian coordinate system o-xyz
can be expressed as follows:

(—é+s cosa|sing— ( o cosyr|cosf
2 ) v |

x=l+x+

X:l+xT+

X=l+xT+

y=rcosd
z=rsinf

(17

Egs. (16) — (17) indicate that for a toroidal
propeller with given geometric parameters
(including its total axial span, diameter, hub-radius
ratio, number of blades, and its radius, chord length,
pitch, skew, backward rake, and blade section
distributed along the direction of its axial span), the
coordinates of points on its surface in the three-
dimensional space can be determined using the
mathematical equations for the three-dimensional
coordinates. Specifically, the coordinates of points
on the blade back can be obtained by substituting y,
into the calculation equations, while those of points
on the blade face can be obtained by substituting y;
into the equations.

Similar to the mathematical expressions of the
three-dimensional coordinates of points for the
geometric shape of conventional propellers, the
points on the blade section at each axial span | can
be expressed in the cylindrical coordinate system
o—xr@ as follows if the distance ¢, from the leading
edge to the generatrix of the blade section is used to
express the geometric shape:

x=1+x+[(-c, +5)cosa] sinﬁ—[( ’zb
t

r:r,—(—g+s)sin(y—( y‘b )simp

¥r

) cos th cosf

O=p+ }i {[(701 + s)cosa]cosf+ [( f: )cosmp] sin,B}

(18)

In this case, the three-dimensional coordinates of

points on the blade section at each axis span | of the

toroidal propeller in the Cartesian coordinate
system 0—-xyz can be expressed as follows:

x=I1+x+[(—c; + s)cosa]sing — [( zb )cosw] cosf

y=rcosf
z=rsinf
(19)
The distance c,from the leading edge to the
generatrix of the blade section can be determined as
follows by comparing Eq. (16) with Eq. (18):
b 7O,

ar 2 cosfpcosa (20)

Egs. (16)—-(17) show that for a toroidal propeller
with given geometric parameters (including its total
axial span, diameter, hub-radius ratio, number of
blades, and its radius, chord length, pitch, backward
rake, distance from the leading edge to the
generatrix, and blade sections. distributed along the
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direction of its axial span), the coordinates of points
on the surface of the toroidal propeller in the three-
dimensional space can be determined using the
mathematical equations for the three-dimensional
coordinates.

The above process involves first determining the
blade reference line for the toroidal propeller,
namely, the positions of the blade sections at
various axial spans in the three-dimensional space.
Then, the blade sections at different axial spans are
developed along the blade reference line to obtain
the coordinates of all points on the blade back and
blade face of the toroidal propeller in the three-
dimensional space. This process enables the authors
to achieve the goal of converting offset parameters
into the coordinates of points on the geometric
shape in the three-dimensional space through
mathematical expressions.

4 Application example

A program has been developed in FORTRAN to
generate a three-dimensional model of the toroidal
propeller by the abovementioned mathematical
expression method for the toroidal propeller. This
program can be operated to obtain the three-
dimensional coordinate points on the blade sections
at various axial span | on the premise of specified
geometric parameters of the toroidal propeller
(including its total axial span, diameter, hub-radius
ratio, number of blades, and the distribution of its
radius, chord length, pitch, thickness, rake, skew
angle, or distance from the leading edge to the
generatrix of the blade section, lateral angle, roll
angle, vertical angle, and blade section along the
axial span). These coordinate points can then be
imported into three-dimensional software to fit the
three-dimensional model of the toroidal propeller.

To verify the effectiveness of the mathematical
expression method for the toroidal propeller
proposed in this study, the authors examined the
offsets of a specific toroidal propeller, whose
parameters are listed in Tables 1 and 2. In Table 2,
R is the propeller radius; P is the pitch distributed
along the axial span; t is the thickness distributed
along the axial span; f is the camber distributed
along the axial span.

The three-dimensional coordinate points on the
toroidal propeller are obtained by taking the offsets
of the toroidal propeller in Tables 1 and 2 as inputs
and running the program and shown in Fig. 17(a).
The _three-dimensional: _model © of _the _toroidal

Table 1 Main parameters of toroidal propeller

Parameter Value
Total axial span L/mm 160
Diameter D/mm 800
Hub-radius ratio r, /R 0.2
Number of blade Z 3

Section form NACA 66 {mod)

propeller can then be easily constructed by three-
dimensional modeling software, as illustrated in
Figs. 17(b) -17(d). These figures demonstrate that
the mathematical expression method for the toroidal
propeller proposed in this study effectively
facilitates the conversion from geometric offset
parameters to smooth geometric shapes of the
blades.

D
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il v
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-
s
alr
el

:\ 5

Ty

(a) Three-dimensional
coordinate points

(b) Oblique view
of model

e
(c) Front view of model
Fig. 17 Three-dimensional coordinate points and model of
toroidal propeller

(d) Side view of model

5 Conclusions

This study investigated the mathematical expre-
ssion method for the geometric shape of the toroidal
propeller. Specifically, it provided the definitions of
the coordinate system and reference lines for the
toroidal propeller, as well as its blade generatrix
and blade reference line. Then, it focused on the
expression methods for geometric offset parameters
such as the lateral angle, roll angle, and vertical
angle in the mathematical equations for the three-
dimensional coordinates of the toroidal propeller by
setting geometric offset parameters to be variables
along the direction of the axial span. Furthermore, a
specific toroidal propeller was discussed as an
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Table 2 Geometric parameters of toroidal propeller

1L /R b/D P/D b . 85 4°) x/D e W A% o /%)

0 0200 01210 13120 03007 0.014 0 0 00620  -27.56 0 0
00624 0300  0.1431 13311 02433 0.0304 089 00822  —2552 2.44 0.12
01203 0400 01600 13365 01967 0.044 0 110 00933 2344 338 0.62
01773 0500  0.1723 13206 0.1576 0.0550 090 —0.09%8 2126 426 1.44
02343 0600 01797 12807  0.1253 0.063 4 036 0.0928 1893 5.44 261
02037 0700 01806 11980  0.0986 0.0689 043 00807  -16.33 831 437
03590 0800  0.1683 10784 00774 0.069 8 1.46 —0.0587  -13.26 14.67 6.89
04377 0900  0.1423 09317 00608 0.0619 2.83 —0.025 5 -9.33 28.78 9.39
04889 0950 01228 08631 00548 0.0518 378 —0.002 2 ~6.55 42.83 10.45
05250 0975 01120 08300  0.0526 0.043 1 445 00140 —4.56 55.45 10.98
05729 0995 00027 08065 00524 0.029 % 5.34 0.034 7 -1.86 75.91 1141
06000  1.000 01010 08060 00538 0.0216 5.87 0.0458 —0.24 90.00 11.51
06438 0995 01065 08528 00583 0.008 3 6.69 0.061 5 2.45 118.06 11.28
06842 0975 01190 09512 00653  —0.0035 7.44 0.0732 499 139.40 10.52
07146 0950 01311 1.0400 00727 00113 7.99 0.0789 6.95 151.75 8.97
07574 0900 0514 11829 00867  —0.0203 8.75 0.0819 9.78 164.02 5.54
08150 0800  0.1763 13959 01138  —0.0268 9.72 0.0723 13.77 173.49 233
08582 0700 0189 15433 01410  —0.0276 10.40 0.0537 16.83 176.68 1.44
0.894 1 0.600 01862 16367 01686  —0.0260 10.94 0.029 8 19.44 177.66 0.98
09249 03500 01770 16686 01966  —0.0230 1139 0.002 4 21.74 175.50 0.63
09523 0400 01626 16636 02246  —0.0190 11.77 —0.0272 23.82 179.13 038
09771 0300 0.1447 16524 02526 —0.0147 12.11 ~0.058 4 25.74 179.62 0.17
10000 0200 01240 16310 02807  —0.0100 12.41 —0.091 0 27.56 180.00 0

example. The main conclusions obtained are as
follows:

1) Given that the blades of the toroidal propeller
are closed structures, the radial distribution of
geometric parameters used to analyze conventional
propellers is no longer applicable. Instead, geometric
parameters should be distributed along the direction
of the axial span, and three geometric parameters,
namely, the lateral angle, roll angle, and vertical
angle, should also be introduced so that the
geometric shape of the toroidal propeller can be
fully expressed.

2) The proposed mathematical expression method
for the three-dimensional coordinates of toroidal
propellers allows for the rapid calculation of
coordinate points on the blade sections at different
axial spans of a toroidal propeller by inputting
geometric parameters and the further construction
of a smooth three-dimensional geometric model of
the toroidal propeller.

The proposed method can be applied to
accurately express the geometric shape of a toroidal
propeller and achieve quick three-dimensional
modeling. Follow-up studies will be devoted to
exploring the influence of geometric parameters_on

the performance of toroidal propellers in hydrody-
namics, noise, and strength by applying the proposed
method, revealing the underlying physical mech-
anisms and fluid dynamics principles underlying
the performance of toroidal propellers, and
providing support for the optimization design and
performance improvement of toroidal propellers.
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