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0 Introduction
The layout design of the ship's engine room is an

important part of the overall layout design. Similar

to the overall design of the ship, engine room

design is also an iterative, spiral process with

continuous updates and refinements. The engine

room contains numerous equipment and complex

structures, paired with various types of pipelines,

including both single and branch pipelines. In

general, the structure, the equipment, and the piping

system are interdependent and influence each other.

In conventional design processes, designers must

repeatedly modify and adjust their work to achieve

the final solution, which consumes considerable

time and labor. Swarm intelligence optimization

algorithms, as one of the most common modern

optimization methods, are independent of the analy-

tical nature of the problem and possess parallelism

characteristics. These algorithms can significantly

facilitate pipeline routing design, serving as a

supplement to conventional design approaches.

The artificial bee colony (ABC) algorithm is a

heuristic algorithm that simulates the foraging

behavior of natural bee populations. It exemplifies

swarm intelligence and is distinguished by having

few control parameters, independence from specific

problem details, robust local optimization capabili-

ties, and rapid convergence speed. It is an effective

method for solving multi-objective optimization

problems and optimizing nonlinear continuous

functions.

Researchers worldwide have conducted extensive

research on the ABC algorithm and pipeline
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optimization design. The ABC algorithm was first

proposed by Karaboga[1] in 2005 to optimize

algebraic problems. Wang et al. [2] proposed a path

planning method based on an improved bee colony

algorithm using cubic Bezier curve optimization,

effectively converting the path planning problem

into an optimization problem for generating Bezier

curve control points, thereby facilitating effective

collision-free path planning for smooth paths.

Zhang et al. [3] introduced the ABC algorithm to

address path planning problems for aircraft engine

pipelines, developing an improved multi-objective

ABC algorithm for intelligent pipeline layout in

aircraft engines, thereby achieving diversity and

intelligence in the layout. He et al. [4] used the

maximum and minimum distance product to enhance

the ABC algorithm, addressing issues of slow

convergence and prematurity in the algorithm's

later phases, and implemented it in path planning

of unmanned aerial vehicle (UAV). Li et al. [5]

introduced adaptive selection, crossover, and

mutation operations in genetic operators into ABC

algorithm, improving convergence speed and the

solution quality when solving the warehouse robot

path planning. Luo et al. [6] proposed a midship

section structure optimization method based on

parametric geometric modeling analysis and ABC

algorithm to solve challenges in considering the

profile quantity changes during section structure

optimization. This approach was validated by

optimizing the section structure of an actual ship

subjected to the total longitudinal bending moment.

In terms of ship pipeline routing optimization, Lin

et al. [7-10] designed an improved particle swarm

algorithm based on nonlinear adaptive inertia

weight for optimizing the pipeline layout of the

nuclear power primary loop system. Compared with

the standard particle swarm algorithm, this improved

algorithm enhances convergence speed and mitigates

the issue of local optima. By combining it with a

coevolutionary algorithm, it can realize the

collaborative layout optimization of branch

pipelines. Bian et al. [11-12] proposed an improved A*

algorithm and genetic algorithm for path planning

of ship pipelines. They designed several novel A* -

GA genetic operators and established an algorithm

framework for calculating single, branch, and

multiple pipelines. The feasibility and effectiveness

of the algorithms were verified through experimen-

tal validation.

In routing optimization calculation for branch

pipelines, researchers tend to employ the concept of

coevolutionary algorithm. Polat et al. [13] introduced

coevolutionary algorithms to address vehicle routing

problems, which markedly improved the solution

quality compared with the genetic algorithm. In

addressing the optimization problem of ship branch

pipeline layout, Wu [14] introduced a novel approach

based on coevolutionary algorithm. This method

involves breaking down the branch pipeline system

into several individual pipelines, each represented

by a population. These populations influence each

other to achieve the optimal layout of the branch

pipeline system. Dong et al. [15] tackled the

coordinated layout problem of ship pipelines by

proposing an algorithm framework for multiple or

branch pipeline layouts based on an improved

particle swarm algorithm. Jiang et al. [16] introduced

a coevolutionary improved multi-ant colony

optimization (CIMACO) algorithm for multiple

pipeline optimization design in ships. This method

demonstrated enhanced performance in circumven-

ting local optima and accelerating convergence

speed.

Classic optimization algorithms, such as the

genetic and particle swarm algorithms, are exten-

sively applied in ship and aircraft engine pipeline

layouts, as mentioned in the references above. In

recent years, the ABC algorithm has emerged to

address non-deterministic and multi-objective

challenges, garnering significant interest. Its

application predominantly involves 2D robot path

planning and optimizing pipeline layouts using

simplistic 3D models. However, the ABC algorithm

is unsuitable for optimizing the routing of branch

pipelines. Moreover, the conventional ABC algorit-

hms are prone to local optima, and their optimiza-

tion efficacy tends to diminish in the latter phases

of the process. There is considerable potential for

improvement, particularly in pipeline layout

optimization. Pathfinding and algorithmic logic

improvements could substantially elevate the

solution quality and accelerate convergence speed.

This paper addresses the challenge of pipeline

path planning within ship pipeline systems, focusing

primarily on refining the computational process to

achieve the optimal pipeline layout. ABC algorithm

is utilized to tackle the optimization issue, and

improvements are made to address the shor-

tcomings of the basic ABC algorithm. Concurrently,

by integrating the concept of coevolutionary

algorithm, an optimization algorithm tailored for
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branch pipeline routing optimization is introduced.

Ultimately, the feasibility and efficiency of the

algorithm are verified through actual engineering

cases.

1 Description of pipeline path
planning problems

The pipeline routing optimization problem,

which involves identifying the optimal pipeline

layout within a specified layout space under certain

conditions, constitutes a complex, constrained

multi-objective optimization problem, as expressed

in Eq. (1):

(1)

where x represents the design variable; f(x), gi(x),

and hj(x) represent the objective function, inequality

constraint, and equality constraint of the pipeline

path optimization problem, respectively; m, k, and q

represent the number of the objective function,

inequality constraint, and equality constraint,

respectively; Lb and Ub are the lower and upper

bounds of the design variable values.

1.1 Coding method

For the pipeline path planning problem, each

solution is represented by the expression of a single

path. This paper utilizes a fixed-length coding

approach, where the basic unit comprises the 3D

coordinates of the nodes along the path. Consequently,

the encoding method for a path is expressed as

Eq. (2):

(2)

where (xs, ys, zs) and (xe, ye, ze) represent the 3D

coordinates of the start and end points of the

pipeline, respectively, with the remaining points

denoting the nodes through which the pipeline path

traverses.

1.2 Objective function

The objective function for the routing optimiza-

tion problem studied in this paper primarily

considers the following five aspects.

1) Path length function.

(3)

where L(x) represents the total length of the

pipeline path; li represents the length of the i-th

road section within the pipeline; n represents the

number of road sections in the pipeline.

2) Elbow number function.

The elbow number function, denoted by B(x),

represents the number of elbows in a path. When

determining whether a specific intermediate node in

the path forms an elbow, the positions of the two

adjacent nodes are considered. If the three nodes

are collinear, the intermediate node is not classified

as an elbow; otherwise, it is. Assuming that p is the

node to be evaluated, with its preceding and

succeeding nodes defined as, p1 and p2 respectively.

This paper employs Eqs. (4) and (5) to calculate the

unit vector e1 between p1 and p2 and the unit vector

e2 between p and p2, respectively.

(4)

(5)

where (x, y, z) are the 3D coordinates of point p; (x1,

y1, z1) and (x2, y2, z2) are the 3D coordinates of point

p1 and p2, respectively.

Elbow number function is calculated by Eq. (6).

(6)

where np is the number of nodes in the path.

3) Orthogonal function.

(7)

where O(x) represents the path orthogonality value,

if O(x) = 0, the paths are entirely orthogonal; the

variables dx, dy, and dz are the absolute differences

in the x, y, and z coordinates between the i-th node

and the (i + 1) -th node, respectively; min to of

{dx, dy, dz} is the minimum sum of the two

minimum values among dx, dy, and dz .

4) Energy area function.

The energy area function is represented by E(x).

Within the 3D space, pipeline layout is encouraged

to be placed around obstacles and in the boundary

regions of the map. These regions are set as energy

areas. The energy area around obstacles is set as

shown in Fig. 1. The energy area function denotes

the length of the pipeline routing traversing the

LI T L, et al. Analysis of ship pipeline routing optimization algorithm based on improved artificial
bee colony algorithm 3
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energy area, as depicted in Eq. (8). A larger calcu-

lated result indicates that the pipeline traverses

more energy areas, signifying a better layout effect.

(8)

where le is the path length through the energy area

in the i-th road section.

Regular area

Energy area

Obstacle

Fig. 1 Schematic diagram of energy area

5) Penalty function.

The penalty function is represented by P(x),

which penalizes unreasonable situations in the path,

such as interference with obstacles or path retracing.

By integrating the objective functions expressed

in Eqs. (1) - (5), we derive the overall objective

function for the pipeline optimization problem, as

shown in Eq. (9). This is also called fitness function.

(9)

where a, b, c, d, and e are weight coefficients used

to control the weight proportions of the sub-

objective functions L(x), B(x), O(x), E(x), and P(x)

in the algorithm.

From the optimization problem expression Eq. (1)

and the overall objective function Eq. (9), it is clear

that this study transforms the multi-objective opti-

mization into the single-objective optimization of

pipeline routing. This means it is converted into a

minimization problem, where a smaller F(x) value

indicates a better pipeline layout. Due to the

different units and significant numerical discre-

pancies in the calculation results of each sub-

objective function, to more reasonably represent

each sub-objective function in the optimization

process, some sub-objective functions are non-

dimensionalized using Eq. (10), making their values

fall within the range of [0, 1].

(10)

where xmin and xmax are the minimum and maximum

values of the objective function results.

A summary of the dimensionalization methods

for the sub-objective functions is provided in Table 1.

1.3 Constraints

Pipeline layout problems are similar to path

planning problems but have distinct differences.

The ship pipeline layout needs to consider the

influence of multiple constraints, including physical,

economic, production, and safety constraints,

making it a complex pipeline path planning

problem with numerous constraints. The specific

constraints include the followings:

1) Connectivity between pipeline start and end

points. Connectivity is a physical constraint of

pipeline layout, and the path of the pipeline should

ensure continuity between the start and end points

without any interruptions.

2) Non-interference between the pipeline and

obstacles. Assuming the pipeline passes through n

path nodes and there are m obstacles in the layout

space, to meet the physical constraint of avoiding

interference between the pipeline and obstacles, the

situation described in Eq. (11) must be prevented.

(11)

where xi, yi, and zi are the 3D coordinates of the i-th

path node; Xjmin and Xjmax, Yjmin and Yjmax, Zjmin and

Zjmax represent the minimum and maximum values

of the j-th obstacle's coordinate range in the x, y,

and z directions, respectively, within the layout

space.

Table 1 Dimensionalization method and description of each sub-objective function

Sub-objective
function Value description

Path length
function L(x)

Elbow number
function B(x)

Orthogonal
function O(x)

Energy area
function E(x)

Penalty
function P(x)

xmin is represented by the straight-line distance between the starting points of the pipeline.
xmax is represented by the maximum value of all path lengths in the initial population.

xmin is set to 0, indicating that the path has no elbows. xmax is represented by the maximum value of
the elbow number inm in all paths in the initial population.

If there are any unreasonable conditions in the path, the penalty function after dimensionalization is
set to 1; otherwise, it is set to 0.

xmin is set to 0, indicating that the path is entirely orthogonal. xmax is represented by the maximum
orthogonality value of all paths in the initial population.

This equation represents the ratio of the path length that passes through the energy area to the total
path length, where L is the total path length.
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3) Minimize path length. The goal is to satisfy

economic constraints and reduce the cost of pipe-

line layout.

4) Minimize the elbow number. The goal is also

to satisfy economic constraints and reduce the cost

of pipeline layout.

5) Ensure orthogonality of the pipeline layout.

The pipelines should be positioned orthogonally

within the layout space to meet production con-

straints, avoiding oblique lines.

6) Maximize pipeline placement in energy areas.

In practice, most pipelines are preferred to be

placed close to equipment or bulkheads to meet

production and safety constraints. However, certain

pipelines, such as those for fuel oil transport, should

avoid being routed above boilers. These constraints

are managed by setting energy areas.

2 ABC algorithm improvements
and its application in the con-
cept of coevolution

2.1 Basic ABC algorithm

ABC algorithm primarily consists of four basic

elements: food sources, leading bees, following

bees, and scout bees. These three types of bees

collaborate and share information about the food

sources during the foraging process (searching

process), thereby finding the optimal solution to the

problem.

1) Food sources correspond to the solutions of

the problem, with the quality of the food source

representing the quality of the solution.

2) Leading or employed bees are tasked with

locating food sources. Consequently, their numbers

are proportional to the food sources. In each

iteration, a leading bee searches within its

neighborhood. If a new solution is better, it will

replace the old one; otherwise, the old one is

retained. Furthermore, leading bees share infor-

mation about the food sources for other bees to

select and evaluate.

3) Following bees select food sources based on

the information provided by leading bees, generally

using a roulette wheel selection method. They are

also responsible for sharing information about food

sources, allowing other bees to make informed

choices and judgments.

4) Scout bees help avoid local optima. If a

leading bee fails to find a better solution after

several iterations in the iterative process, it will

become a scout bee and search for a new food

source globally.

The calculation process of the ABC algorithm is

illustrated in Fig. 2.

Start

Initialize the population,
with each leading bee

corresponding to a food source

Leading bees perform
neighborhood searches

and make greedy selections

Calculate fitness

Following bees choose
leading bees using a roulette

wheel selection method

Search for new food
sources to replace
the old solutions

Yes

Yes

No

No

If scout bees need
to be generated?

If the convergence
conditions are met?

Output the
optimal solution

End

Fig. 2 Flow chart of ABC algorithm

The main calculation steps of ABC algorithm are

as follows:

1) In the population initialization phase, first set

the number of food sources to N, which is also the

number of leading bees N. The dimension of the

solution to the problem is D. The initial population

of leading bees is generated according to Eq. (12).

(12)

where i ∈ [1, N]; j ∈ [1, D]; xjmax and xjmin represent

the respective upper and lower bounds of the j-th

dimension of the solution; δ denotes a random

number within the range [0, 1].

2) In the leading bee phase, during each iteration,

each leading bee conducts a neighborhood search

using Eq. (13) to obtain a new candidate solution zij.

The fitness of both the old solution xij and the new

solution zij is then calculated and evaluated, with

the better solution selected for the next iteration.

(13)

where i ∈ [1, N], d ∈ [1, N], and d ≠ i, j ∈ [1, D]; ϕij

LI T L, et al. Analysis of ship pipeline routing optimization algorithm based on improved artificial
bee colony algorithm 5
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is a random number in the range [-1, 1].

3) In the following bees phase, after the leading

bees finish searching and updating, they will share

the solution information with the following bees.

The following bees select the leading bees based on

the quality of the solution, typically using the

roulette wheel selection method. The probability Pi

of selecting a particular leading bee is calculated

using Eq. (14). Meanwhile, after selecting a leading

bee to follow, the following bees will also perform

a neighborhood search.

(14)

where fiti is the fitness value of the i-th solution.

4) In the scout bee phase, if a food source xi has

not been updated for a given number of iterations

(limit), it is deemed that the solution is trapped in a

local optimal solution, and the food source will be

abandoned. The leading bees will then become

scout bees, generating a new solution to replace the

old one, according to Eq. (12).

2.2 Improvements to the ABC algorithm

2.2.1 Including mutation operation in genetic

operators

In ABC algorithm, the role of following bees is

to selectively follow the path information shared by

leading bees, typically using a roulette wheel

selection method. After selection, they perform a

neighborhood search to find potentially better

solutions, which promotes convergence and

enhances diversity within the neighborhood. But

this neighborhood search is similar to the update

method of leading bees, which serves as a

supplementary role and lacks the function of

generating new solutions globally. In contrast, the

crossover method in genetic operators is primarily

used to obtain new solutions globally. Introducing

the crossover strategy into the update method of

following bees can not only ensure that leading

bees continue to update better solutions within the

neighborhood, but also allow the entire population

to supplement new solutions globally.

Therefore, based on the conventional ABC

algorithm, the optimization strategy of following

bees can be modified as follows: first, randomly

select two paths shared by leading bees and use a

single-point crossing method to determine the

position of the crossing point in the paths. Then,

exchange the path information after the crossing

point to obtain two new paths, as shown in Fig. 3.

Finally, calculate the fitness of the two new paths,

compare them with the corresponding following

bees from the previous generation, and perform a

greedy selection.

Fig. 3 Schematic diagram of single point crossing

Parental generation
Parental generation

Filial generation
Filial generation

Crossing point

2.2.2 Implement adaptive strategies for cross-

over operators

In the basic genetic algorithm, the crossing

probability Pc remains constant. A higher crossing

probability Pc can ensure more high-quality

solutions in the early phases of population

evolution. However, in the later phase of population

evolution, a higher crossing probability Pc can

destroy excellent individuals. Therefore, this paper

proposes a crossing probability Pc that can change

according to the fitness differences between

population groups. The calculation method for

adaptive crossing probability Pc is shown in Eq.

(15):

(15)

where is the crossing probability parameter; Pcmax

and Pcmin are the upper and lower bounds of

crossing probability; fmax and fmin are the maximum

and minimum fitness values of the current

population; fa is the average fitness value of the

current population; f' is the larger fitness value

among the two crossover individuals.

The function of Eq. (15) is to adaptively modify

the crossing probability based on the characteristics

6
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of population fitness. After introducing the crossing

operator into the basic ABC algorithm, a larger

value of the crossing operator can improve the

ability of the algorithm to search for new solutions

globally in the early phases of the algorithm.

However, as the algorithm progresses, the fitness of

each individual in the population tends to stabilize.

Through Eq. (15), the crossing probability can be

reduced to prevent the destruction of the better

individuals in the population.

2.2.3 Enhancing the strategy of scout bees

searching for new paths

For the strategy of finding new paths after the

scout bees are activated, this paper proposes

improvements to ABC algorithm from two aspects.

Firstly, the scout bee is generated when leading

bees have not found a better solution after a certain

amount of iterations (limit). At this point, the

solution found by the leading bee might be a global

optimal solution or trapped in a local optimal

solution. If the solution is a global optimal solution,

generating the scout bee will destroy this optimal

solution. Therefore, an elite retention strategy can

be introduced, where the fitness of all individuals in

the population is assessed before generating the

scout bees. If the best individual in the population is

found, it is retained for the next generation;

otherwise, a new solution continues to be sought.

Additionally, for the specific path optimization

problem, the solution can be represented by

multiple continuous segments from the starting

point to the endpoint of the path. In addition to

being represented by "elbow points", it can also be

represented by "road sections". Leading bees

iteratively optimize the coordinates of the "elbow

points" to find the optimal path. In the later phase

of the algorithm, there may be a situation as shown

in Fig. 4. When the path is trapped in a local

optimal solution, the global optimal solution can

only be obtained by updating P2 to the position of

Pbest while keeping other points unchanged. At this

point, it becomes difficult to avoid local optimal

solution or discover a better path through

neighborhood search by leading bees or re-search

by scout bees. This difficulty mainly arises because

the solution's dimensionality is overly complex

when optimizing by updating points, and the update

direction is excessively random. Therefore, this

paper proposes a new update strategy for scout

bees, shifting the focus of the path update to "road

sections". Since the start point of the path is fixed,

in a path with 5 nodes, only 2 "road sections" can

be iteratively updated. The update direction of the

"road section" is limited to the direction per-

pendicular to the section, significantly increasing

the probability of avoiding local optima.

Local optimal solution

Global optimal solution

Fig. 4 Local optimal solution and global optimal solution

After improving the algorithm, scout bees adopt

a new path updating strategy, as shown in Fig. 5. In

the optimization process, road section P1P2 can be

updated first. Since the optimization can only be

performed in the direction perpendicular to the road

section, points P1 and P2 have a greater probability

of being updated to the positions of Pbest and P3.

The road section P2P3 can also be updated. Points

P2 and P3 are more likely to be updated to P1 and

Pbest. Both update approaches can achieve the global

optimal solution. The path continues to be

represented by node coordinates. After the final

result is obtained, the path is simplified by

removing redundant nodes, resulting in the final

optimal path:[ ( P startx
, P starty

) ] , [ ( Pbestx
, Pbesty

) ], [ ( P endx
,

P endy
) ] .

Update the road

section P 1
P 2

Update the road
section P

2 P
3

Fig. 5 A strategy for road section optimization

2.3 Optimization design of branch pipeline

routing using ABC coevolution algorithm

If the routing optimization of a single pipeline is

considered as a single objective, then the branch

pipeline optimization can be viewed as a problem

of simultaneously optimizing multiple objectives.

The concept of coevolution can be described as

follows: A system consists of multiple subsystems

or can be divided into several subsystems. While

independently completing their evolutionary pro-

LI T L, et al. Analysis of ship pipeline routing optimization algorithm based on improved artificial
bee colony algorithm 7
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cesses, these subsystems influence each other. They

are capable of "sharing" information. As each

subsystem evolves, it exchanges beneficial informa-

tion with others, enabling the entire system to

develop collaboratively and ultimately find the

optimal solution for the whole system.

Based on the concept of coevolution, this paper

proposes an optimization strategy adapted to the

ABC algorithm, specifically designed to address the

optimization challenge of branch pipeline routing.

Typically, a network of branch pipelines includes a

main pipeline, with other pipelines branching off

from it at a junction point, as illustrated in Fig. 6.

The pipeline from Pstart to Pend1 represents the main

pipeline, while the pipeline from Pstart to Pend2 is the

branch pipeline. Since the starting point of the

branch pipeline must be on the main pipeline, the

routing optimization problem of branch pipeline

can be transformed into two tasks: determining the

exact location of the branch point on the main

pipeline and finding the optimal path from the

branch point to the endpoint of the branch pipeline.

In this paper, the location of the branch point along

the main pipeline is represented by a decimal r,

where r ∈ [0, 1]. When r = 0, the branch point is at

the start of the main pipeline; when r =1, it is at the

end of the main pipeline. Additionally, r can

represent the ratio of the Manhattan distance from

the start of the main pipeline to the branch point,

relative to the Manhattan distance between the start

and end points of the main pipeline. For instance, in

Fig. 6, the branch point location is r = 0.43. During

the population initialization, the branch point

positions are generated randomly. Throughout the

iterative optimization process, these positions are

updated according to the optimization method used

by the leading bees in the ABC algorithm (Eq. (13)).

Branch point

Fig. 6 Example diagram of branch pipeline

Thus, the optimization problem of branch

pipeline paths can be divided into three tasks: the

single pipeline routing optimization of the main

pipeline, the determination of branch point

positions for other pipelines, and the single path

optimization from the branch point to the endpoint

after the branch point positions are determined. The

key lies in applying the concept of coevolution to

establish connections between these tasks, thereby

achieving coevolution.

The basic flowchart for branch pipeline routing

optimization based on the ABC algorithm is

illustrated in Fig. 7. After the algorithm is initiated,

the main pipeline for the branch network is first

established based on the start point location of each

branch path, and the initial population for the main

pipeline is generated. Next, the branch points for

other pipelines, which serve as their starting points,

are randomly determined on each individual of the

main pipeline's population. The initial populations

for these branch pipelines are then generated. The

iterative process follows, with each iteration

including updates to the main pipeline paths, branch

point positions, and other pipeline paths. Finally,

after the iterations conclude, the optimal paths for

all pipelines are output.

3 Simulation example of ship
pipeline routing optimization
based on improved ABC algo-
rithm

3.1 Experimental verification and simu-
lation example of single pipeline
routing optimization

To verify the feasibility and efficiency of the

improved artificial bee colony (IABC) algorithm

proposed in this paper, it is necessary to compare

the experimental results with those from relevant

studies on pipeline routing optimization. Therefore,

two numerical simulation examples of single

pipeline routing from Ref. [17] are selected, and the

proposed IABC algorithm is applied to these cases.

The results are then compared with those reported

in the reference.

First, the computational environment must be

specified. All calculations in this section are

performed on a computer running the Windows10

operating system, equipped with an AMD Ryzen

54600H processor and 16 GB of memory. The

optimization algorithm is written in Python3.7

using the PyCharm 2021 software.

For the single pipeline calculation, the parameters

8
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of the IABC algorithm are set as follows: the

number of food sources (equivalent to the number

of leading bees) N = 30, the number of following

bees No = 30, the maximum number of iterations

Max_G = 200, the maximum cycle number of a

food source Max_Limit = 15, and crossing

probability parameter P ′c = 0.7, with the upper and

lower bounds set to Pcmax = 0.9 and Pcmin = 0.5

respectively. If the weights of each sub-objective

function are all set to 1, there is a tendency for the

path to follow an oblique line, as the path should be

shorter with fewer elbows. Therefore, when setting

the weights of each sub-objective function, it is

necessary to decrease the weights for path length

and elbow count while increasing the orthogonality

weight. The weight coefficients are set to a = 0.8,

b = 0.8, c = 2, d = 1, e = 1.

Using the IABC algorithm introduced in this

paper, computations were conducted on models 2

and 6 from Ref. [17]. The results obtained from

these examples are compared with those in the

reference, as shown in Figs. 8 and 9, respectively. A

comparison of average convergence iterations, path

lengths, and other relevant data is summarized in

Table 2. The results indicate that the IABC

algorithm achieves satisfactory path optimization

and demonstrates fast convergence for single

pipeline routing.

Furthermore, to verify that the IABC algorithm

can efficiently solve the actual layout problem of

single pipelines on ships, this paper uses the fuel oil

Fig. 7 Flow chart of branch pipeline routing optimization

based on ABC coevolutionary algorithm

End

Output the
optimal solution

Check if the convergence
conditions are met?

Check if there are any
un-updated populations?

No

No

No

Yes

Start

Determine the main pipeline
of the branch pipeline and

initialize the population

Determine branch points
randomly on the main pipeline

Initialize the population
of other pipelines

P=0 P: The number of populations
that have completed updating

Update the main pipeline path
based on ABC algorithm

Update other pipeline paths
based on ABC algorithm

Update the location of branch
points based on the update

method of leading bees

Fig. 8 Calculation results of single pipeline of model 2 in

Ref. [17]

(a) Calculation results of algorithm in Ref. [17]

(b) Calculation results of improved ABC algorithm

(a) Calculation results of algorithm in Ref. [17]

LI T L, et al. Analysis of ship pipeline routing optimization algorithm based on improved artificial
bee colony algorithm 9
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piping system in the ship's engine room as the

research object and conducts a routing optimization

calculation for the single pipelines involved. The

required equipment for the fuel oil piping system is

simplified according to their shapes, and the

equipment is arranged in the corresponding positions

within the 3D layout space of the engine room,

which measures 15 000 mm in length, 12 000 mm

in width, and 8 000 mm in height. The simplified

layout space of the ship's fuel oil piping system is

shown in Fig. 10, and the positions of various

equipment in the space can be expressed by the

diagonal coordinates of each equipment, as shown

in Table 3.
Fig. 9 Calculation results of single pipeline of model 6 in

Ref. [17]

Table 2 Data comparison of single pipeline results of two models calculated

by IABC algorithm and the algorithm in Ref. [17]

Average convergence generations

Average convergence time/s

Path length/mm

Number of elbows

Parameter Algorithm
in Ref.[17]

IABC
algorithm

Reduction
rate/%

Model 2 Model 6

Algorithm
in Ref.[17]

IABC
algorithm

Reduction
rate/%

(b) Calculation results of improved IABC algorithm

The pipeline extending from the oil purifier

supply pump to oil purifier 1 was selected for the

single pipeline simulation experiment. The

coordinates for the start and end points of this

pipeline are (11 800, 6 000, 2 000) and (4 800,

2 700, 2 800), respectively. Routing optimization

was performed using the ABC and IABC

algorithms, with 20 iterations each. As shown in

Table 4, the results indicate that both algorithms

achieved satisfactory path layout results, and the

optimal layout solutions obtained by both

algorithms were identical. The optimal pipeline

path is: [(11 800, 6 000, 2 000), (11 800, 2 700,

2 000), (4 800, 2 700, 2 000), (4 800, 2 700, 2 800)],

with a total path length of 11, 000 mm, an elbow

count of 2, and an energy area ration (the

proportion of path length that traverses the energy

area relative to the total path length) of 32.0%. In

their respective 20 iterations, the ABC algorithm

achieved the optimal layout in 5 times, whereas the

IABC algorithm achieved it in 17 times. The IABC

algorithm also showed a 37.4% reduction in the

average fitness value and a 20.0% reduction in the

average number of elbows compared with the ABC

algorithm. Additionally, regarding the average

energy area ratio, the IABC algorithm exhibited a

9.3% improvement over the ABC algorithm. These

results indicate that the IABC algorithm can avoid

local optima and has stronger global optimization

capabilities than the ABC algorithm. Furthermore,

the IABC algorithm demonstrates a faster conver-

gence speed, with a 29.9% improvement compared

with the ABC algorithm. Overall, the IABC

algorithm outperforms the ABC algorithm in single

pipeline routing optimization, offering enhanced

solution quality and faster convergence speed.

1-Main engine; 2-Fuel tank 1; 3-Fuel tank 2; 4-Oil purifier 1;
5-Oil purifier 2; 6-Oil purifier supply pump; 7-Diesel daily tank;

8-Fuel oil daily tank; 9-Supply pump; 10-Self cleaning filter

Fig. 10 Layout space of fuel oil piping system in engine room

10
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In this simulation experiment, the optimal

solutions obtained by both the ABC and IABC

algorithms were identical. After ranking the results

from best to worst for each algorithm, the 10th

result in each ranking was selected for comparison.

The layout rendering of the algorithms is shown in

Fig. 11, and the convergence curves are shown in

Fig. 12.

3.2 Experimental verification and simu-

lation example of branch pipeline

routing optimization

To verify the feasibility and efficiency of IABC

algorithm for addressing branch pipeline issues, a

comparison of calculation results by IABC-based

coevolutionary algorithm and algorithm in Ref. [14]

is shown in Fig. 13. Data comparison of branch

pipeline calculation results is summarized in Table 5.

The parameter settings for IABC algorithm are the

same as those used for single pipeline calculations.

It can be seen from the results that both the

algorithm in this paper and the one in Ref. [14] can

obtain feasible solutions by connecting three branch

pipelines through two T-joints. However, in terms

of path length and the number of elbows, the results

obtained by the algorithm in this paper are superior

to those in Ref. [14].

To verify the feasibility and efficiency of the

IABC-based coevolutionary algorithm proposed in

this paper for the actual layout problem of ship

branch pipelines, the engine room model in Section

Equipment
number Equipment diagonal coordinate/mmEquipment name

Main engine

Fuel tank 1

Fuel tank 2

Oil purifier 1

Oil purifier 2

Oil punfier supply pump

Diesel daily tank

Fuel oil daily tank

Supply pump

Self cleaning filter

Table 3 Diagonal coordinates of some equipment in the engine room in the layout space

Table 4 Statistical data of single pipeline results calculated

by ABC and IABC algorithms

Algorithm
Parameter

Optimal fitness value

Average fitness value

Fitness standard deviation

Average convergence generations

Average path length/mm

Average elbow nunber

Average energy area ratio/%

Fig. 11 Layout rendering of single pipeline calculated by

ABC and IABC algorithms

Fig. 12 The convergence curves of single pipeline calculated

by ABC and IABC algorithms

IABC algorithm
ABC algorithm

Number of iterations

F
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3.1 is used. The pipeline from oil purifier 2 to the

diesel daily tank and fuel oil daily tank is selected

as simulation experiment object of the branch

pipeline, with starting coordinates of (7 200, 2 100,

2 200), and the ending coordinates of (5 400, 9 800,

1 500) and (8 200, 9 800, 1 500). ABC and IABC

algorithms are used for routing optimization, and

the calculation was performed 20 times. The

statistics of the calculation results are shown in

Table 6. The optimal layout scheme obtained by the

ABC algorithm is as follows: the main pipeline path

is [(7 200, 2 100, 2 200), (7 200, 8 400, 2 200),

(7 200, 8 400, 1 500), (7 200, 9 800, 1 500), (5 400,

9 800, 1 500)], while the branch pipeline path is

[(7 200, 9 800, 1 500), (8 200, 9 800, 1 500)]. The

total path length is 11 200 mm, with 3 elbows, and

the energy area accounts for 29.0%. Using IABC

algorithm, the optimal layout solution obtained is as

follows: The main pipeline path is [(7 200, 2 100,

2 200), (7 200, 9 800, 2 200), (7 200, 9 800, 1 500),

(5 400, 9 800, 1 500)], and the branch pipeline path

is [(7 200, 9 800, 1 500), (8 200, 9 800, 1 500)].

The path length is 11,200 mm, with 2 elbows, and

the energy area occupancy is 31.0%.

Table 6 Statistics of branch pipeline calculation results

by ABC-based and IABC-based coevolutionary

algorithms

Algorithm
Parameter

Optimal fitness value

Average fitness value

Fitness standard deviation

Average convergence generations

Average path length/mm

Average elbow nunber

Average energy area ratio/%

In terms of average fitness value, average path

length, and average elbow numbers, IABC algorithm

showed reductions of 32.3%, 0.4%, and 20.4%,

respectively, compared with ABC algorithm. IABC

algorithm also increased the proportion of energy

area by 9.2% compared with ABC algorithm. In

addition, the convergence speed of the IABC

algorithm has been improved by 17.7% compared

to the ABC algorithm. In conclusion, when dealing

with branch pipeline problems, the IABC-based

coevolutionary algorithm has superior solutions and

faster convergence speed than the ABC-based

coevolutionary algorithm.

The optimal solutions obtained using two algori-

thms in the simulation experiments are selected,

and the layout rendering is illustrated in Fig.14. The

convergence curves are shown in Fig. 15.

4 Conclusions

This paper addresses the challenges of pipeline

system layout in ship engine rooms by applying the

ABC algorithm to pipeline routing optimization and

using coevolutionary concepts to tackle the routing

optimization of branch pipelines. Considering the

susceptibility to local optima and low com-

putational efficiency encountered when solving

routing optimization problems with the ABC

algorithm, an improved IABC algorithm is

proposed. This algorithm incorporates crossover

operations from genetic algorithms into the

updating method for the following bees and adopts

an adaptive strategy to enhance global optimization

Fig. 13 Comparison of calculation results of branch pipeline

based on experimental models in Ref. [14]

Table 5 Data comparison of branch pipeline calculation

results by IABC-based coevolutionary algorithm

and algorithm in Reference [14]

(a) Calculation results of algorithm in Ref. [14]

(b) Calculation results of IABC-based coevolutionary algorithm

Pararneters
Algorithm
in Ref. [14]

Path length/mm

Number of elbows

IABC-based
coevolutionary algorithm

Reduction
rate/%
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capabilities. Additionally, a more suitable path

update method for the scout bees is introduced,

which strengthens their role and value, leading to

improved convergence speed. The simulation

experiments are as follows:

1) In solving routing optimization problems of

single pipeline, IABC algorithm improves the

layout effect by 37.4% and convergence speed by

29.9% compared to ABC algorithm.

2) In solving routing optimization problems of

branch pipeline, IABC algorithm improves layout

effect by 32.3% and convergence speed by 17.7%

compared with ABC algorithm.

IABC algorithm markedly outperforms ABC

algorithm in both solutions quality and convergence

speed. Compared with conventional pipeline layout

methods, using IABC algorithm significantly saves

design resources, enhances design efficiency, and

promotes the development of intelligent and

automated pipeline workflow in ship pipeline layout.
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基于改进人工蜂群算法的船舶管路
路径寻优算法分析

李铁骊 1，王文双 1，刘海洋 2，3，杨远松 2，3，林焰*1

1 大连理工大学 船舶工程学院，辽宁 大连 116024

2 中核绿色建造技术与装备重点实验室，北京 101300

3 中国核工业二三建设有限公司，北京 101300

摘 要：［目的目的］人工蜂群（ABC）算法具有控制参数少、局部寻优能力强、收敛速度快的特点，但在解决路径寻

优问题方面，存在容易陷入局部最优的缺陷。为解决船舶管路系统中的管路路径规划问题，提出一种改进的人

工蜂群（IABC）算法。［方法方法］在传统人工蜂群算法的基础上，在跟随蜂的更新机制中引入遗传算子中的交叉

操作，并对交叉算子的交叉概率采用自适应的策略；通过对种群进行的交叉操作寻找全局范围内的新解，并改

进侦察蜂寻找新路径的方式，由原来的对路径经过的点进行更新改为对路径中的“路段”进行更新；随后，提出

一种适应于解决分支管路路径寻优的改进人工蜂群协同进化算法。［结果结果］ 实例验证表明，改进后的人工蜂

群算法相比标准人工蜂群算法其路径布置效果能够提升 32.3%~ 37.4%，收敛速度能够提升 17.7%~29.9%。

［结论结论］无论是解决单管路还是分支管路，改进后的人工蜂群算法相比传统的人工蜂群算法求解质量更高、收敛

速度更快、稳定性更好。

关键词：船舶管路；人工蜂群算法；路径规划；协同进化
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