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0 Introduction

Owning to the rapid development of artificial in-

telligence (AI) technology, the warfare form is un-

dergoing an accelerated transformation, and the AI

application has become the core enabler for the on-

going military-technical revolution [1]. As cognitive

speed is the key to success in the age of intelli-

gence, in the cognitive field, independent decision-

making will gradually replace auxiliary decision-

making. Driven by the demand of cognitive warfare

(i. e., intelligent warfare), intelligent decision-

making is in urgent need of solutions. The combat

deduction simulation system is an important deci-

sion-making tool for system-of-systems (SoS) oper-

ations. In the system, the operational elements

(OEs) such as battlefield environment, military forc-

es, and combat operations are described as formal

specifications and modeled in accordance with the

operational rules abstracting from warfare or mili-

tary training. On this basis, the process and out-

come of the combat as well as casualties are de-

duced. Therefore, this deduction simulation system

is also an effective means for the military to con-

duct simulation training and scientifically evaluate

planned combat schemes. Once cognitive warfare

becomes the main battlefield of the SoS operations

in the future, the deduction simulation system will

be the virtual battle space for studying the counter-

measure tactics, and intelligent decision-making
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will become the key to affecting the evolution trend

of warfare [2].

Traditional combat deduction decision-making

mainly depends on the decision-making component

solidified in a model. It can realize the understand-

ing of the battlefield situation by the simulation

model and output the corresponding decision-making

scheme directly [3]. An external decision-making

model is another traditional decision-making model-

ing method. In this model, the decision-making

knowledge of commanders and their experience-

based judgments is documented in the knowledge

database and serves as the basis for the deduction

simulation of the model, such as the decision-making

modeling method based on rules and conditions.

However, once the scale of the state space increases,

the above decision-making methods will be difficult

to maintain, but the modularity and reusability of

the behavior tree can make them become powerful

decision-making tools [4]. On April 26, 2017, the

United States Department of Defense initiated the

establishment of the "Algorithmic Warfare Cross-

Functional Team (AWCFT)" to accelerate the inte-

gration of technologies such as AI and big data into

the military field and officially start the process of

exploring the militarized application of cognitive

intelligence. On December 31, 2019, the Center for

Strategic and Budgetary Assessments (CSBA) of

the United States, a think tank, released a report ti-

tled "Taking Back the Seas: Transforming the U.S.

Surface Fleet for Decision-Centric Warfare", which

pointed out that the concept of "decision-centric

warfare" would become the theoretical traction for

the construction of intelligent transformation of the

U. S. military. To this end, relevant studies have

been carried out in China actively. Since 2018, the

Science and Technology Innovation Special Zone

for National Defense of China has held the human-

machine challenge of "Prophet Soldier Saint" at the

tactical level. Both sides of the challenge carry out

independent deduction and decision execution and

scramble for the "capture and control point" in the

virtual scenarios of multiple terrains and landforms

such as cities and mountains on the "Land

Wargame" platform. The influence degree of the

relevant AI algorithms on combat decision-making

is evaluated by the final outcome of the confronta-

tion between the two sides.

The prominent problems in military confronta-

tion include incomplete rules, incomplete informa-

tion, and insufficiently highly real-time response. In

reinforcement learning (RL), an agent can keep try-

ing while interacting with the environment. It aims

to maximize the cumulative returns, continuously

explores the optimal policy, and demonstrates a

powerful decision-making ability. This provides a

new effective way to solve the aforementioned

problems. For example, the residual networks

(ResNets) and Monte-Carlo tree search (MCTS) [5]

were combined to build a decision-making model,

and a single agent made decisions for round-based

combat, and thus the wargame system had the abili-

ty of intelligent decision-making. However, ma-

chine learning methods generally have the problems

of over-fitting and poor generalization ability.

Therefore, the research on the intelligent decision-

making framework based on deep RL (DRL) has be-

come popular. Using the deep learning (DL) algo-

rithm to analyze and process the battlefield aware-

ness data is helpful for commanders to quickly iden-

tify the battlefield situation, and the RL algorithms

can be used to assist the decision-making, which is

conducive to improving the tactical level of the

commanders and gaining competitive advantages[6].

Since the combat mode of future warfare is "the fast

defeats the slow", the policy output speed of the de-

cision-making model cannot be ignored. The com-

pressed network architecture (e.g., parametric prun-

ing and low-rank decomposition [7]) transforms the

deep network into a lightweight one so as to meet

the highly real-time characteristics of actual re-

sponse in combat identification.

At present, in view of the fact that the counter-

measure technology for intelligent policies with

huge decision-making space and incomplete infor-

mation has not made a complete breakthrough, the

theory and methods based on DRL are still in their

infancy.Among all combatneeds, the decision-making

advantage is the kernel, which will become the key

to victory in modern warfare. In the observe-orient-

decide-act (OODA) loop, decision-making is also

the bottleneck that restricts the loop speed. In view

of this, in this paper, the deep neural network

(DNN) and the soft actor-critic (SAC) RL algorithm

are used in the combat deduction simulation system

mainly from the perspective of intelligent decision-

making model construction. The deduction simula-

tion platform is applied, and the validity of the

decision-making model and the applicability of the

relevant algorithm are verified by taking the anti-

submarine warfare (ASW) scenario of ship-borne

helicopters as an example.
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1 SAC algorithm

The SAC algorithm[8] includes three key ele-

ments: 1) The maximum entropy framework is used

to enhance the stability of the model and improve

the exploration ability of an agent. 2) The off-policy

is used for updates and for the reuse of the previous-

ly collected data to improve efficiency. 3) The actor-

critic (AC) architecture is adopted with an indepen-

dent policy network and value network, in which

the policy is called Actor, and the value function is

called Critic.

1.1 Maximum entropy RL

The Markov decision process (MDP) is the ideal

form of RL in mathematics [9]. The infinite horizon

MDP is defined by a quintuple (S, A, P, r, γ), where

S is the state space, A the action decision space, and

both are continuous; P: S × S × A → [0,∞) is the

probability of state transition, which represents the

probability density of the state st+1 ∈ S at the next

moment when the state st ∈ S and the exploration ac-

tion at ∈ A at the current moment are given; γ is the

discount factor, representing the influence degree of

the income obtained at each moment on the total re-

turn; r is the bounded return given by each state

transition environment, and r:S × A → [rmin, rmax].

The agent aims to learn a policy π: S → A to maxi-

mize the cumulative expected return, as shown in

Eq. (1)

(1)

where ρπ is the marginal distribution of the policy

generation trajectory (st, at, st + 1, at + 1, st + 2, at + 2, ...).

As shown in Eq. (2), the maximum entropy RL is

obtained by adding an adjustable entropy term H on

the basis of Eq. (1), and the goal of the agent is to

find the optimal policy that can simultaneously

maximize both the cumulative expected return and

entropy. Greater information entropy means a more

uniform distribution. The maximization of informa-

tion entropy is beneficial to increasing the explora-

tion ability of the model.

(2)

where α is the temperature parameter, and for α→0,

Eq. (2) is equivalent to Eq. (1).

1.2 Off-policy updates

The off-policy update adopts two policies: One is

used for agent learning and finally becomes the op-

timal policy, called the target policy πtar; the other is

used for the generation of agent trajectory samples,

called the action policy πact. Meanwhile, since the

data used by the agent for learning and the target

policy to be learned are separate, the off-policy up-

date generally has a large variance and slow conver-

gence. However, this separation has an advantage,

namely that when the action policy continues to

sample all possible actions, deterministic target poli-

cies can be used.

When processing the prediction problem, both

the target policy and the action policy are fixed, and

thus the state value function v̂ ≈ vπ (the state value

function of the given policy π) or the action value

function q̂ ≈ vπ (the action value function of the

given policy π) can be learned. For the control prob-

lem, the two policies will change continuously

when the agent is learning, and the target policy πtar

will gradually become the greedy policy with re-

spect to q̂, while the action policy πact will gradually

become some exploratory policy with respect to q̂.

1.3 AC system

In the AC system, the temporal difference (TD)

method is adopted, and an independent model is

used to estimate the long-term returns of the state-

action sequence rather than using the real returns di-

rectly. As shown in Fig. 1, the policy network is

called Actor and is used for action selection; while

the value network is called Critic and is used for

evaluating the quality of an action. We adopt the

TD form shown in Eq. (3) to evaluate the newly se-

lected exploration action at , where V is the state

value of Critic. If the TD error (δt) is positive, the

trend of selecting the exploration action at should

be strengthened. If the TD error is negative, the fre-

quency of selecting the exploration action at should

be reduced.

Policy

Update
error

Value function

award

Action

Environment

State

Fig. 1 Architecture of AC system [10]

WANG X Z, et al. Intelligent decision technology in combat deduction based on soft actor-critic algorithm 3
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(3)

where rt+1 is the return given by the environment at

the next moment.

As shown in Fig. 2, the AC system updated by

the off-policy is composed of the online evaluation

network and the target network, whose network

architectures and initialization parameters are the

same. First, the experience buffer data are extract-

ed, and the target returns are obtained through the

target network. Then, the Critic network is updated

according to the TD error. Finally, the Actor net-

work in the evaluation network is updated, where

the action exploration and the update of the Actor

network adopt different policies.

Fig. 2 AC system updated by off-policy

2 Analysis of deduction simulation
missions

2.1 Introduction to ASW scenario

The ASW scenarios of guided missile destroyers

for helicopters are as follows. The blue team navy

has two submarines anchored in a certain sea area,

and the information is aware by the red team navy.

Thus, the red team sends ship-borne ASW helicop-

ters to search for the submarines of the blue team.

For the red team, the combat goal of the ASW heli-

copters is to find and destroy the submarines of the

blue team by dropping sonobuoys in the target wa-

ter area. Its surface ships mainly provide fire sup-

port to ASW helicopters, such as torpedoes and anti-

submarine rockets. For the blue team, the combat

goal of submarines is to hide tracks and avoid being

destroyed. The military force structure of the red

and blue teams is shown in Tables 1 and 2.

2.2 Sonobuoy modeling

The sonobuoy system forms judgments in the or-

der of linear path detection, water surface reflection

detection, and convergence zone detection. Taking

9.874 73 n mile as the cardinal number of the linear

detection range, and then, according to the distance

d between the two teams, the submarine topography

m of the target, and the altitude h of the target from

the seabed, we can obtain the linear detection range

RD through correction, as shown in Eq. (4).

(4)

Experience buffer data

AwardState Action State at the next moment

Target network

Action
Critic networkActor network

Training error of Critic

Parameter update

Critic networkActor network

Training error of Actor

Parameter
update

Evaluation network

Table 1 Military force structure of the red team

Unit type and name

NH-60R Sea Hawk
ASW helicopter

Arleith Burke-class Flight
IIA guided missile destroyer

Navigational
speed/(km·h-1)

Location Number Main equipped weapons

Lightweight torpedo Mk-54×2;
AN/SSQ-62E directional command

active sonobuoy system(DIXSS system)×8;
AN/SSQ-53F directional frequency

analysis and recording passive sonobuoy
system(DIFAR system)×1

Lightweight torpedo Mk-54×40;
RUM-139C VLA anti-submarine rocket×8

Table 2 Military force structure of the blue team

Navigational
speed/(km·h-1) Location Number Main equipped weaponsUnit type and name

955A Borei class nuclear-powered
ballistic missile submarine

21310 Gills-NN class conventionally
powered submarine

SS-N-15 Starfish anti-submarine
missile×2; USET-80K torpedo×14

High-performance explosive×6
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In this equation, the maximum theoretical detec-

tion range of sonar is taken as the cardinal number.

According to d, m, h, the speed v of the detection

team, and the signature strength Ts of the target, the

effective detection range of the convergence zone

RC is obtained through correction, as shown in Eq. (5).

(5)

where Rmax is the maximum theoretical detection

range of sonar. Generally, the linear detection range

is far larger than the detection range of the conver-

gence zone, i. e., RD ≫ RC. In Eqs. (4) and (5), f is

the correction factor related to the variables.

For water surface reflection, as shown in Fig. 3,

assume that the heights of the detection point and

the target point from the seabed are a and b, respec-

tively. Then, the position where the acoustic wave

is reflected through the water surface is calculated.

With the horizontal distance between the calculated

position and the detection point being w and that be-

tween the detection point and the target point being

c, w can be calculated according to Eq. (6). Taking

the position of the detection point on the sea as the

origin, we can determine the reflection point P0

with the distance w toward the target direction.

Reflection point

Target point

Detection
point

Fig. 3 Water surface reflection detection

(6)

The linear cumulative distance Dh from the detec-

tion point to the target point through the reflection

point can be calculated by

(7)

where e is the straight-line distance between the re-

flection point and the detection point, and g is the

linear distance between the reflection point and the

target point.

If the correction factor f is less than 1, we can use

Eq. (8) to correct RC, namely,

(8)

The corrected detection range is compared

with the cumulative range Dh of the reflection line.

If Dh < , the target may be detected through water

surface reflection; if Dh > , the target cannot be

detected through water surface reflection.

2.3 MDP modeling for ASW helicopters
of the red team

The combat unit of the red team in the deduction

simulation scenario is subjected to the training of

DRL, and thus the ASW helicopters of the red team

have the ability of independent decision-making in

repeated interactions with the environment and can

destroy the submarines of the blue team automati-

cally. The quintuple (S, A, Pa, J, γ) is used to repre-

sent MDP, where S is the state space of the ASW he-

licopters obtained in real time; A is the action

decision-making space of the ASW helicopters;

Pa(s', s) is the probability of the ASW helicopters

entering the next state s' under the state s and action

a; J is the optimization objective of the ASW heli-

copters, and the discount factor γ ∈(0, 1).

1) State space settings.

The situation data returned by the ASW helicop-

ters of the red team have more than one hundred di-

mensions. In order to ensure the convergence of the

model, we take the key factors (such as longitude,

latitude, and heading) affecting the success or

failure of missions as the state information elements;

in other words, S = [longitude, latitude, heading].

As shown in Fig. 4, the longitude and latitude coor-

dinates represent the current positions of the ASW

helicopters, and the heading β represents the devia-

tion angle between the current flight direction of an

ASW helicopter and the target submarine of the

blue team; vx and vy represent the velocities of the

ASW helicopter in the x- and y-directions, respec-

tively.

longitude

latitude

Fig. 4 State analysis of an ASW helicopter of the red team

2) Action space settings.

The ASW helicopters of the red team also have

dozens of actions to perform, and the action space

WANG X Z, et al. Intelligent decision technology in combat deduction based on soft actor-critic algorithm 5
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selection can affect the success or failure of mis-

sions. For example, the heading of an ASW helicop-

ter and dropping/not dropping sonar to detect sub-

marines, namely that A= [heading, dropping/not

dropping sonar].

3) Optimization objective settings.

As shown in Eq. (9) [8], the optimization objec-

tive J for the ASW helicopters of the red team is to

maximize both the return function r and the expect-

ed entropy H of policy. In the equation, T is the hori-

zon length; α is the temperature parameter, which

determines the relative importance of the entropy

term to the return and controls the randomness of

the optimal policy [11]. Compared with the conven-

tional optimized cumulative return, the additional

term H will encourage the red team to explore more

extensively, abandon planned paths that cannot help

achieve ultimate victory, and significantly increase

the learning speed of the ASW helicopters.

(9)

The return function r is set as follows: The red

team will get a positive return when it approaches

the target area (a circle area with the latitude and

longitude coordinate of (34° 17'55"E, 43° 48'74"N)

as the center and the radius of 5 km), and it will get

a negative return when it deviates from the target

area. A greater or smaller deviation will lead to a

greater absolute return. The specific calculation is

shown in Eq. (10), where η represents the absolute

deviation between the target orientation and the cur-

rent orientation of an ASW helicopter.

When the distance between an ASW helicopter

and a submarine is less than the radius (5 km) of the

target area, the ASW helicopter of the red team will

drop sonar. If the globally unique identifier (GUID)

of the blue team captured by the red team is the

same as the target submarine in the current situa-

tion, it can be determined that the ASW helicopter

of the red team has found the submarine of the blue

team. For the alleviation of sparse reward in RL,

the red team will receive a 10-point return if its

ASW helicopter drops sonar or finds a submarine.

The input of the deduction system is the action

list of combat units deduced from the neural net-

work. It is the basis for the decision-making of

whether the combat unit of the red or blue team has

been shot down. If the combat unit is not shot down

(i.e., not all state values are 0), and the executed ac-

tion exists, the action of the combat unit will be exe-

cuted. If all ASW helicopters are shot down, the red

team will gain a return of -100 points. If all subma-

rines are destroyed, the red team will gain a return

of 150 points.

(10)

3 Decision-making model building
based on the SAC algorithm

3.1 Decision-making network construc-

tion of the red team

The decision-making network for the anti-

submarine agent of the red team is constructed by

adding the value network into the classical AC sys-

tem. As shown in Fig. 5, it mainly includes the val-

ue network, the policy network, and the soft Q net-

work, which are described by the parameterized

state value function Vψ(st), the policy πϕ(at|st), and

the soft Q function Qθ(st,at), respectively. The archi-

tecture and parameters of the target and online net-

works of the three network units are the same. The

experience buffer data (st, at, rt, st+1) are used to

train the target network with off-policy. The online

network para-meters are updated periodically by

means of calculating the loss function L and solving

the gradients (i.e., the gradient of the value network

ψJV(ψ), the gradient of the policy network ϕJπ(ϕ),

and the gradient of the soft Q network θJQ(θ)).

This can not only reduce the correlation between

samples but also effectively improve the data utili-

zation rate for large-scale continuous domain prob-

lems such as deduction simulation. Meanwhile, the

soft update of the target network parameters can sta-

bilize the entire training process [12].

The introduction of the independent value net-

work can make the training of the anti-submarine

agent of the red team more stable and easy to syn-

chronize with that of other networks. The entropy

term H in Eq. (9) is expanded in the expected form,

and it is taken as one of the update objectives of the

value network. Therefore, we can obtain the state

value function shown in Eq. (11). As shown in Fig. 6,

the value network has four layers, the first three of

which are hidden layers, and each hidden layer has

256 hidden units. The last layer of the neural net-

work is a one-dimensional output layer, which out-

puts the corresponding state value V. The neurons of

6
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the hidden layers use the ReLU activation function

to enhance the nonlinear modeling capability of the

value network.

(11)

Fig. 6 Structure of the value network

As shown in Fig. 7, the policy network has five

layers, the first three of which are hidden layers

with 256, 128, and 64 hidden units separately. The

neural network of the 4th layer standardizes the out-

put information of the previous layer, and the out-

put includes the Gaussian distributions of the mean

and standard deviation. The last layer of the policy

network is a two-dimensional output layer, which

outputs the corresponding actions according to the

input states. The policy generated by the policy net-

work and then output through the Gaussian distribu-

tion (i. e., πϕ(at|st)) will assign different probability

values to different actions, which is conducive to

the exploration of the red team agent and improving

the long-term returns. The policy network parame-

ter ϕ can be updated directly by minimizing the KL

divergence, as shown in Eq. (12). By reparameteriza-

tion, we can obtain the random actions to be execut-

ed by the red team agent and the new soft Q func-

tion value Qθ(st, fϕ), which can ensure that the objec-

tive function is differentiable, and its gradient can

be updated.

(12)

(13)

where Zθ (st) is the partition function for distribution

standardization; DKL is the KL distance, and fϕ(εt; st)

is the reparameterization policy after neural net-

work transform.

Fig. 7 Structure of the policy network

Fig. 5 Decision-making network of the red team's helicopters based on the SAC algorithm

Experience buffer data

Value network V

Loss function

Loss function
Soft Q network Loss function

Gaussian distribution

Policy network

WANG X Z, et al. Intelligent decision technology in combat deduction based on soft actor-critic algorithm 7
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Substituting the action function of Eq. (13) into

Eq. (12), we can write the objective expression of

the policy network as

(14)

where E is the expectation function; εt is the input

noise, and N indicates the Gaussian distribution of

noise.

The soft Q network alternates policy evaluation

and policy improvement, and thus the red team

agent can obtain a better policy, and the decision-

making level can be enhanced. In the policy evalua-

tion step, the value of the current policy π is calcu-

lated according to the objective of maximum entro-

py in Eq. (9). For the fixed policy, we can start from

any function Q: S ×A→R (R represents the return

set) and use the corrected Bellman auxiliary opera-

tor Tπ [13] and the soft Bellman equation [14] to calcu-

late the action value function Q iteratively, as

shown in Eq. (15). In the case that the action set A

is bounded, the sequence Qk converges to Qπ when

the number of iterations k goes to infinity.

(15)

where p is the state transition probability.

In the policy improvement step, in the policy set

Π, the policy π' updates off-line to be proportional

to the exponential distribution of the new Q func-

tion. First, the policy of the agent is updated by

each state through Eq. (16) to ensure that the new

policy is superior to the old one, i. e.,

. Then, the KL divergence is minimized

so as to reduce the difference between the two dis-

tributions, where Zπold(st) is the normalized distribu-

tion of the Q value. Finally, the agent of the red

team finds the optimal policy π* by policy itera-

tions.

(16)

As shown in Fig. 8, the soft Q network has two

input dimensions, i. e., states and actions. An input

state passes through four hidden layers with 256,

128, 256, and 128 hidden units separately, and an in-

put action passed through three hidden layers with

128, 256, and 128 hidden units separately. Before

entering the third hidden layer, the output results of

the input state and action are combined, and the ac-

tion state value Q is output through the final one-

dimensional output layer.

3.2 Balance of exploration and utiliza-
tion of the red team agent

If the red team agent simply executes the current

policy and selects the action with the maximum re-

turn, it will fall into a local optimal dilemma owing

to insufficient exploration. The exploration of the

action state space should be expanded during the

training of the red team agent, and thus the red team

agent can find the blue team target as soon as possi-

ble and improve the long-term return. Since the tem-

poral correlation of the Ornstein-Uhlenbeck (OU)

process is good, the OU noise [15] is introduced after

the policy network outputs the deterministic ac-

tions. Then, the policy is randomized, and the ac-

tion values are sampled from the current policy to

obtain the exploration action at, as shown in Fig. 9.

OU noise
OU process

Policy
network action

Deterministic Exploration
action

Sampling

Fig. 9 Exploration action selection of the red team agent

3.3 Algorithm design

The algorithm pseudo-code includes the follow-

ing steps.

Step 1: Initializing the value network parameter

ψ, the policy network parameter ϕ, and the soft Q

network parameter θ.

Step 2: Initializing the parameters of the target

network ， ， .

Fig. 8 Structure of the soft Q network

8
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Step 3: Initializing the experience buffer space D

and flag done.

Step 4: Repeating the following operations for

each episode.

1) Obtaining the environment state s0.

2) If there is an ASW helicopter of the red team

(not shot down by the submarines of the blue team,

or the deduction is ended owing to not destroying

the submarines of the blue team), and the number of

the execution steps is smaller than the maximum

number of specified steps, the following operations

should be repeated.

(1) Inputting the current state st into the policy

network, selecting the action, and adding OU noise,

i.e., at∼πϕ(st) + N.

(2) Executing the action at to obtain the return rt

and entering the next state st+1.

(3) Saving (st, at, rt, st+1) into the experience buf-

fer space D.

(4) If the amount of data is larger than the capaci-

ty Ns of the experience replay buffer space, we

should collect Ns samples from D, i. e., (st
i, at

i, rt
i,

si
t+1), i = 1, 2, ..., Ns.

(5) According to the target value function , cal-

culating the expected return of the soft Q target net-

work :

(6) Calculating the loss function JV(ψ) of the value

network and the gradient and updating all

parameters of the value network ψ, where

(7) Calculating the loss function JQ(θ) of the soft

Q network and the gradient and updating all

parameters of the soft Q network θ, where

(8) Calculating the loss function Jπ(ϕ) of the poli-

cy network and the gradient and updating

all parameters of the policy network ϕ.

(9) Soft updates of the parameter of the target value

network , the parameter of the soft Q network of

the target , and the parameter of the target policy

network :

3) If all submarines of the blue team are de-

stroyed (done=1), or the maximum number of speci-

fied steps is reached, ending the 2) loop.

Step 5: If the maximum number of the specified

episodes is reached, ending the entire loop.

4 Experiments and analysis of
combat deduction simulation

4.1 Combat deduction simulation envi-
ronment

The applicability of the decision-making model

is validated with the combat deduction simulation

platform. The overall framework of the platform is

shown in Fig. 10. The combat deduction simulation

system has functions such as data management,

command and control, and performance evaluation.

The AI research platform includes two parts, i. e.,

the Python software development kit (SDK) and the

AI processing module, which cooperates with the

combat deduction simulation system to realize intel-

ligent learning of specific research cases. The spe-

cific program development environment and the re-

lated interfaces of the AI research platform are

shown in Fig. 11, which is mainly composed of the

AI business interface, the simulation interactive in-

terface, the command pool, the situation pool, the

situation adapter, the algorithm library, and the com-

munication interface. The PyTorch framework is

used to program the SAC decision-making algo-

rithm, and then, the obtained algorithm is stored in

the algorithm library. At the AI business interface,

the agent objects and environment objects are created.

Fig. 10 Overall framework of the simulation platform
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Directing
monitoring
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control
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recording
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configuration for
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Intelligent
control command

AI processing module

P
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n

S
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AI

Application
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Python AI database
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The decision-making algorithm in the algorithm li-

brary is used, and the simulation operation com-

mands are sent to the server for execution. The in-

formation of the server situation returned by the

communication interface in real time is collected,

which makes the anti-submarine agent learn inde-

pendent decision-making during the continuous

interactions with the environmental information.

4.2 Results and analysis of deduction

Deduction simulation is carried out in the simula-

tion experiment environment introduced in Section

4.1 to validate the intelligent decision-making abili-

ty of the trained agent of the red team. As shown in

Fig. 12, at the beginning of the anti-submarine

agent training, the obtained return is relatively

small and fluctuates greatly in each loop. When the

number of episode increases, the return increases

correspondingly, and when the number of iterations

reaches 600, the return tends to be stable. Accord-

ingly, at the early stage of training, the ASW heli-

copters of the red team keep dropping sonar to

search for the submarines of the blue team, with

strong randomness. After continuous training and

learning, the time it takes to find the submarines

is gradually reduced. In this way, independent

decision-making is achieved, and the targets are

found and destroyed automatically. The specific

settings for the training of hyper-parameters are

shown in Table 3.

The process of the Sea Hawk ASW helicopter de-

stroying the conventional Gill-NN submarine is

shown in Fig. 13. In the figure, the conventional

Gill-NN class submarine is located in the upper left

corner; the Arleigh Burke class guided missile de-

stroyer is at the lower left corner, and the sono-

buoys dropped by the ASW helicopter of the red

team used to search for the blue team submarine are

in the middle area. The corresponding track map is

shown in Fig. 14. In the figure, the Sea Hawk ASW

helicopter starts from the position (34° 13'E, 43°

48'N), keeps dropping sonar to search for the blue

team submarine, and finally destroys the conven-

tional Gill-NN class submarine at the target position

(33°85'E, 43°74'N).

Fig. 13 ASW helicopter of red team destroying conventional

submarine of blue team

The process of the Sea Hawk ASW helicopter de-

stroying the Borei class nuclear-powered ballistic

missile submarine is shown in Fig. 15. In the figure,

the Borei class nuclear-powered ballistic missile

User AI algorithm

AI business interface

Simulation
interactive interface

User operation interface
(command adapter)

User situation
interface

Command pool
Situation pool

Situation adapter

Algorithm
database

Basic
algorithm

AI algorithm

GIS algorithm

Communication interface

Server

Fig. 11 Overall framework of AI development platform

Iteration
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tu
rn

Fig. 12 Training process of red team agent

Table 3 Hyper-parameter settings

Parameter Value

Learning rate

Discount factor

Soft update rate

Temperature parameter

Capacity of experience replay buffer space

Number of training samples per batch

Maximum training number of episode

Maximum training steps per episode
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submarine is at the lower right corner, and the Ar-

leigh Burke class guided missile destroyer is at the

lower left corner. The corresponding track map is

shown in Fig. 16; in the figure, the Sea Hawk ASW

helicopter starts from the position (34° 13'E, 43°

48'N), keeps dropping sonar to search for the blue

team submarine, and finally destroys the Borei class

nuclear-powered ballistic missile submarine at the

target position (34°65'E, 43°4'N).

Fig. 15 Red team destroys nuclear submarine of blue team

Longitude E

L
at

it
ud

e
N

Track of the helicopter destroying
the nuclear-powered submarine

Fig. 16 Track map of red team destroying nuclear submarine

of blue team

The improved SAC decision-making algorithm

and DDPG decision-making algorithm are com-

pared and analyzed, and the results are shown in

Fig. 17. It can be seen that at the beginning of train-

ing, the average returns of the two algorithms in-

crease rapidly. Specifically, the intelligent training

agent by the DDPG algorithm adopts a determinis-

tic policy to make decisions. After about 300 itera-

tions, it begins to converge, and the return tends to

be stable. The improved SAC algorithm adopts an

exploratory policy and converges slowly. With the

increase in the iterations, its average return is signifi-

cantly higher than that of the DDPG algorithm. In

addition, after the performance of the agents trained

by the two algorithms tends to be stable, 60 deduc-

tion simulation experiments are conducted, among

which every six of the experiments are taken as a

group, and there are 10 groups of experiments in to-

tal. On this basis, the obtained probabilities of the

10 groups are compared and analyzed, and the re-

sults are shown in Fig. 18. It can be seen that the

average winning probability of the anti-submarine

agent obtained by the DDPG algorithm is 49.32%,

while that by the SAC decision-making algorithm is

73.85%, which is nearly 24.53% higher than the

former.

Iteration

A
ve

ra
ge

re
tu

rn

Improved SAC
DDPG

Fig. 17 Comparison of average returns of two decision-

making algorithms

Algorithm type

W
in
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pr
ob
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it
y

Fig. 18 Comparison of the winning probability of the red team

5 Conclusions

In view of the decision-making problem in com-

bat deduction simulation, an intelligent decision-

making model based on the SAC algorithm is pro-

posed. With the model, the red team agent can learn

to find the blue team target and make independent

decisions through continuous interactions with the

Fig. 14 Track map of ASW helicopter destroying conventional

submarine of blue team
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environment without priori knowledge and achieve

a victory eventually. Deduction simulation is car-

ried out on the basis of the ASW scenario of

ship-borne helicopters. The results reveal that the

decision-making model built in this paper has

strong learning and judgment abilities after the off-

policy training with the experience buffer data. The

intelligent anti-submarine agent of the red team suc-

cessfully explores and destroys the blue team sub-

marine, which indicates the effectiveness of the in-

telligent decision-making model. In future relevant

studies, the number of agents can be increased, and

the algorithm can be improved by analyzing the

characteristics of the multi-agent game. In this way,

the intelligent decision-making of combat deduc-

tion for multi-agent DRL can be realized.
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基于 SAC算法的作战仿真推演
智能决策技术

王兴众，王敏*，罗威
中国舰船研究设计中心，湖北 武汉 430064

摘 要：［目的目的］现有作战推演仿真系统主要基于作战规则和经验知识作决策，但存在应用场景有限、效率低、灵

活性差等问题。为此，提出一种基于深度强化学习（DRL）技术的智能决策模型。［方法方法］首先，建立仿真推演

的最大熵马尔科夫决策过程（MDP）；然后，以 actor-critic（AC）体系为基础构建智能体训练网络，生成随机化策

略以提高智能体的探索能力，利用软策略迭代更新的方法搜索更优策略，不断提高智能体的决策水平；最后，在

仿真推演平台上对决策模型进行验证。［结果结果］ 结果表明，利用改进 SAC 决策算法训练的智能体能够实现自

主决策，且与深度确定性策略梯度（DDPG）算法相比，获胜概率约提高了 24.53%。［结论结论］所提出的决策模型

设计方案可以为智能决策技术研究提供理论参考，对作战仿真推演具有借鉴意义。

关键词：作战推演；自主决策；深度强化学习；软策略迭代；最大熵
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