LI T, SUN S X, ZHAO M. Study on implosion characteristics of deep-sea ceramic pressure hull considering thermal effect[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–17 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04342
Citation: LI T, SUN S X, ZHAO M. Study on implosion characteristics of deep-sea ceramic pressure hull considering thermal effect[J]. Chinese Journal of Ship Research, 2025, 20(X): 1–17 (in Chinese). DOI: 10.19693/j.issn.1673-3185.04342

Study on implosion characteristics of deep-sea ceramic pressure hull considering thermal effect

More Information
  • Received Date: December 29, 2024
  • Revised Date: February 07, 2025
  • Available Online: February 25, 2025
© 2025 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Objective 

    This study aims to investigate the implosion shock load characteristics and thermodynamic mechanisms of ceramic pressure hull in the extreme environment of the deep sea, and a numerical simulation method for implosion of deep-sea ceramic pressure hull based on a compressible multiphase flow model with pressure-velocity-temperature equilibrium and adaptive mesh encryption is proposed,.

    Methods 

    This proposed method can enable accurate prediction of the shock wave and fine capture of the flow field. Then, underwater implosion experiments of ceramic pressure hull are carried out to verify the validity of the numerical method; Finally, the numerical study of implosion of ceramic pressure hull in the 10,000 m depth reveals the characteristics of the implosion shock load and thermal effects. The implosion of deep-sea ceramic pressure hull with different water depth and water temperature is studied numerically and its influence rule is analyzed.

    Results 

    The implosion of deep-sea ceramic pressure hull will release shock waves outwards and produce significant thermal effect when the gas is violently compressed. With the increase of ambient pressure, the peak overpressure coefficient of the implosion shock wave decreases and the attenuation rate increases; However, ambient water temperature does not significantly affect the implosion characteristics of ceramic pressure hull.

    Conclusion 

    This study reveals the implosion characteristics of deep-sea ceramic pressure hull, which has positive theoretical significance and engineering value for the assessment and protection research of underwater implosion.

  • [1]
    罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9–18. doi: 10.19693/j.issn.1673-3185.01632

    LUO S, LI Y S, WANG W B. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9–18 (in Chinese). doi: 10.19693/j.issn.1673-3185.01632
    [2]
    BOWEN A D, YOERGER D R, TAYLOR C, et al. The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11, 000 m depth[C]//OCEANS 2008. Quebec City: IEEE, 2008: 1−10. doi: 10.1109/OCEANS.2008.5151993.
    [3]
    CRESSEY D. Submersible loss hits research[J]. Nature, 2014, 509(7501): 408–409. doi: 10.1038/509408a
    [4]
    RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, 1917, 34(200): 94–98. doi: 10.1080/14786440808635681
    [5]
    PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277–282. doi: 10.1115/1.4009975
    [6]
    GILMORE F R. The growth or collapse of a spherical bubble in a viscous compressible liquid[R]. Pasadena, CA, USA: California Institute of Technology, 1952.
    [7]
    KELLER J B, MIKSIS M. Bubble oscillations of large amplitude[J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633. doi: 10.1121/1.384720
    [8]
    ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35(3): 033323. doi: 10.1063/5.0145415
    [9]
    ZHANG A M, LI S M, XU R Z, et al. A theoretical model for compressible bubble dynamics considering phase transition and migration[J]. Journal of Fluid Mechanics, 2024, 999: A58. doi: 10.1017/jfm.2024.954
    [10]
    ORR M, SCHOENBERG M. Acoustic signatures from deep water implosions of spherical cavities[J]. The Journal of the Acoustical Society of America, 1976, 59(5): 1155–1159. doi: 10.1121/1.380977
    [11]
    TURNER S E. Underwater implosion of glass spheres[J]. The Journal of the Acoustical Society of America, 2007, 121(2): 844–852. doi: 10.1121/1.2404921
    [12]
    何成贵. 氮化硅陶瓷空心浮力球的制备及性能研究[D]. 上海: 上海材料研究所, 2017.

    HE C G. Fabrication and performance research of Silicon nitride ceramic hollow flotation spheres[D]. Shanghai: Shanghai Research Institute of Materials, 2017 (in Chinese). (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [13]
    武大江, 梅志远, 周晓松. 深水静压下混杂夹芯复合结构形变及强度特性[J]. 中国舰船研究, 2015, 10(5): 47–52. doi: 10.3969/j.issn.1673-3185.2015.05.008

    WU D J, MEI Z Y, ZHOU X S. Deformation and strength characteristics of hybrid sandwich composite structures under static pressure in deep water environment[J]. Chinese Journal of Ship Research, 2015, 10(5): 47–52 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.05.008
    [14]
    SUN S X, ZHAO M. Numerical simulation and analysis of the chain-reaction implosions of multi-spherical hollow ceramic pressure hulls in deep-sea environment[J]. Ocean Engineering, 2023, 277: 114247. doi: 10.1016/j.oceaneng.2023.114247
    [15]
    ZHENG J C, ZHAO M. Fluid-structure interaction of spherical pressure hull implosion in deep-sea pressure: experimental and numerical investigation[J]. Ocean Engineering, 2024, 291: 116378. doi: 10.1016/j.oceaneng.2023.116378
    [16]
    陈建国, DIETRICH R A, 朱继懋. 影响内破裂因素的数值分析研究[J]. 海洋工程, 1994, 12(2): 13–25. doi: 10.16483/j.issn.1005-9865.1994.02.002

    CHEN J G, DIETRICH R A, ZHU J M. Numerical analyses of factors influencing implosion[J]. The Ocean Engineering, 1994, 12(2): 13–25 (in Chinese). doi: 10.16483/j.issn.1005-9865.1994.02.002
    [17]
    ZHANG X L, FENG M L, ZHAO M, et al. Failure of silicon nitride ceramic flotation spheres at critical state of implosion[J]. Applied Ocean Research, 2020, 97: 102080. doi: 10.1016/j.apor.2020.102080
    [18]
    陈锋华, 赵敏. 万米级深海陶瓷耐压结构水下内爆流场数值模拟[J]. 海洋工程, 2022, 40(2): 143–153,176. doi: 10.16483/j.issn.1005-9865.2022.02.014

    CHEN F H, ZHAO M. Numerical simulation of flow field of underwater implosion of full-ocean-depth ceramic pressure hull[J]. The Ocean Engineering, 2022, 40(2): 143–153,176 (in Chinese). doi: 10.16483/j.issn.1005-9865.2022.02.014
    [19]
    SUN S X, CHEN F H, ZHAO M. Numerical simulation and analysis of the underwater implosion of spherical hollow ceramic pressure hulls in 11000 m depth[J]. Journal of Ocean Engineering and Science, 2023, 8(2): 181–195. doi: 10.1016/j.joes.2022.01.002
    [20]
    SUN S X, ZHAO M, JIANG Y T. Numerical study of chain-reaction implosions in a spatial array of ceramic pressure hulls in the deep sea using a compressible multiphase flow model[J]. Physics of Fluids, 2024, 36(1): 016112. doi: 10.1063/5.0184654
    [21]
    SUN S X, ZHAO M. Numerical simulation of chain-reaction implosions and analysis of different implosion beginning positions[C]//42nd International Conference on Ocean, Offshore and Arctic Engineering. Melbourne: American Society of Mechanical Engineers, 2023: V005T06A090. doi: 10.1115/OMAE2023-102820.
    [22]
    YANG F J, LIU Y L, ZHANG S, et al. Characteristics and load reduction method of the deep-sea implosion of the ellipsoidal and egg-shaped pressure hulls[J]. Ocean Engineering, 2023, 281: 114904. doi: 10.1016/j.oceaneng.2023.114904
    [23]
    MOSS W C, CLARKE D B, WHITE J W, et al. Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence[J]. Physics of Fluids, 1994, 6(9): 2979–2985. doi: 10.1063/1.868124
    [24]
    AKHATOV I, LINDAU O, TOPOLNIKOV A, et al. Collapse and rebound of a laser-induced cavitation bubble[J]. Physics of Fluids, 2001, 13(10): 2805–2819. doi: 10.1063/1.1401810
    [25]
    SCHMIDMAYER K, PETITPAS F, LE MARTELOT S, et al. ECOGEN: an open-source tool for multiphase, compressible, multiphysics flows[J]. Computer Physics Communications, 2020, 251: 107093. doi: 10.1016/j.cpc.2019.107093
    [26]
    SCHMIDMAYER K, PETITPAS F, DANIEL E. Adaptive mesh refinement algorithm based on dual trees for cells and faces for multiphase compressible flows[J]. Journal of Computational Physics, 2019, 388: 252–278. doi: 10.1016/j.jcp.2019.03.011
    [27]
    LE MARTELOT S, SAUREL R, NKONGA B. Towards the direct numerical simulation of nucleate boiling flows[J]. International Journal of Multiphase Flow, 2014, 66: 62–78. doi: 10.1016/j.ijmultiphaseflow.2014.06.010
    [28]
    SAUREL R, BOIVIN P, LE MÉTAYER O. A general formulation for cavitating, boiling and evaporating flows[J]. Computers & Fluids, 2016, 128: 53–64. doi: 10.1016/j.compfluid.2016.01.004
    [29]
    SAUREL R, PETITPAS F, BERRY R A. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[J]. Journal of Computational Physics, 2009, 228(5): 1678–1712. doi: 10.1016/j.jcp.2008.11.002
    [30]
    ROE P L. Characteristic-based schemes for the Euler equations[J]. Annual Review of Fluid Mechanics, 1986, 18: 337–365. doi: 10.1146/annurev.fl.18.010186.002005
    [31]
    VAN LEER B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[J]. Journal of Computational Physics, 1974, 14(4): 361–370. doi: 10.1016/0021-9991(74)90019-9
    [32]
    VAN LEER B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection[J]. Journal of Computational Physics, 1977, 23(3): 276–299. doi: 10.1016/0021-9991(77)90095-X
    [33]
    SHYUE K M, XIAO F. An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach[J]. Journal of Computational Physics, 2014, 268: 326–354. doi: 10.1016/j.jcp.2014.03.010
    [34]
    WESTON S, OLSSON M, MEREWETHER R, et al. Flotation in ocean trenches using hollow ceramic spheres[J]. Marine Technology Society Journal, 2009, 43(5): 110–114. doi: 10.4031/MTSJ.43.5.24
    [35]
    ITTC. Uncertainty analysis in CFD, uncertainty assessment methodology[C]//Proceedings of the 22nd International Towing Tank Conference. China: ITTC, 1999: 4.9-04-01-01. (查阅网上资料, 未找到本条文献出版地信息, 请确认)
    [36]
    BIDI S, KOUKOUVINIS P, PAPOUTSAKIS A, et al. Numerical study of real gas effects during bubble collapse using a disequilibrium multiphase model[J]. Ultrasonics Sonochemistry, 2022, 90: 106175. doi: 10.1016/j.ultsonch.2022.106175

Catalog

    Article views (75) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return