Citation: | SUN P B, DONG Z P, LIU W, et al. Parameter identification of unmanned surface vehicle MMG model based on an improved extended Kalman filter[J]. Chinese Journal of Ship Research, 2025, 20(1): 38–46 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03816 |
To construct an accurate MMG (mathematical model group) model for a water-jet propulsion unmanned surface vehicle, the traditional extended Kalman filter algorithm and improved extended Kalman filter algorithm are combined with the real-world boat data for parameter identification.
First, based on the traditional EKF algorithm, in order to fully utilize the valuable information hidden in the historical data, an improved EKF algorithm integrating multi-innovation theory and dynamic forgetting factor is proposed. Then, using the real-world unmanned surface vehicle data, the unknown parameters in the MMG model are identified. Finally, the identified parameter values are substituted into the established MMG model, and the rudder angle and main engine speed consistent with the real boat data are input. The heading angle, longitudinal velocity, transverse velocity, heading angle rate and position information data are obtained through simulation, and the comparative analysis is carried out.
The results indicate that compared with the traditional EKF algorithm, the root mean squared error index and the symmetric mean absolute percentage error index of the improved EKF algorithm are closer to 0. Specifically, the root mean squared error index is reduced by up to 20.02% at the highest, and the symmetric mean absolute percentage error index is reduced by 26.84% at the highest.
The simulation results demonstrate that the improved extended Kalman filter algorithm has higher identification accuracy, verifying the accuracy of the MMG model established by the algorithm.
[1] |
郑华荣, 魏艳, 瞿逢重. 水面无人艇研究现状[J]. 中国造船, 2020, 61(增刊1): 228–240. doi: 10.3969/j.issn.1000-4882.2020.z1.028
ZHENG H R, WEI Y, QU F Z. Review on recent developments of unmanned marine surface vessels[J]. Shipbuilding of China, 2020, 61(Supp1): 228–240 (in Chinese). doi: 10.3969/j.issn.1000-4882.2020.z1.028
|
[2] |
任兵, 陈卫国, 饶银辉, 等. 基于移动式浮标的无人艇航行监测系统设计[J]. 中国测试, 2022, 48(4): 123–128. doi: 10.11857/j.issn.1674-5124.2021020104
REN B, CHEN W G, RAO Y H, et al. Design of unmanned surface vehicle navigation monitoring system based on mobile buoy[J]. China Measurement & Test, 2022, 48(4): 123–128 (in Chinese). doi: 10.11857/j.issn.1674-5124.2021020104
|
[3] |
ABKOWITZ M A. Lectures on ship hydrodynamics-steering and manoeuvrability[R]. Hydro-Aerodynamics Laboratory, 1964.
|
[4] |
小林陽弘, 小山健夫, 貴島勝郎. MMG報告-I操縦運動の数学モデルについて[J]. 日本造船学会誌, 1977, 575: 192–198. doi: 10.14856/zogakusi.575.0_192
AKIHIRO O, KATSURO K, TAKEO K. MMG Report-I mathematical model of maneuver motion[J]. The Society of Naval Architects of Japan, 1977, 575: 192–198 (in Japanese). doi: 10.14856/zogakusi.575.0_192
|
[5] |
DUBEY A C, SUBRAMANIAN A V, KUMAR V J. Steering model identification and control design of autonomous ship: a complete experimental study[J]. Ships and Offshore Structures, 2022, 17(5): 992–1004. doi: 10.1080/17445302.2021.1889193
|
[6] |
WANG S L, XU Y J. Parameter identification of ship roll motion based on vibration tests and CFD method[J]. Measurement Science and Technology, 2021, 32(10): 105014. doi: 10.1088/1361-6501/ac04e2
|
[7] |
XU H T, HASSANI V, SOARES C G. Uncertainty analysis of the hydrodynamic coefficients estimation of a nonlinear manoeuvring model based on planar motion mechanism tests[J]. Ocean Engineering, 2019, 173: 450–459. doi: 10.1016/j.oceaneng.2018.12.075
|
[8] |
张显库, 祝慧颖. 基于正弦函数处理新息的船舶模型参数辨识新算法[J]. 中国舰船研究, 2021, 16(5): 158–162. doi: 10.19693/j.issn.1673-3185.02122
ZHANG X K, ZHU H Y. New identification algorithm for ship model parameters based on sinusoidal function processing innovation[J]. Chinese Journal of Ship Research, 2021, 16(5): 158–162 (in Chinese). doi: 10.19693/j.issn.1673-3185.02122
|
[9] |
张海胜, 董早鹏, 杨莲, 等. 基于加权遗忘多新息RLS的无人艇响应模型在线参数辨识[J]. 大连海事大学学报, 2023, 49(2): 15–22. doi: 10.16411/j.cnki.issn1006-7736.2023.02.002
ZHANG H S, DONG Z P, YANG L, et al. Online parameter identification of unmanned vehicle response model based on weighted forgetting multiple innovation RLS[J]. Journal of Dalian Maritime University, 2023, 49(2): 15–22 (in Chinese). doi: 10.16411/j.cnki.issn1006-7736.2023.02.002
|
[10] |
徐锋, 刘志平, 郑海斌, 等. 基于LS-SVM的船舶操纵运动在线建模[J]. 船舶力学, 2021, 25(6): 752–759. doi: 10.3969/j.issn.1007-7294.2021.06.007
XU F, LIU Z P, ZHENG H B, et al. On-line modeling of ship maneuvering motion by using LS-SVM[J]. Journal of Ship Mechanics, 2021, 25(6): 752–759 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.06.007
|
[11] |
朱曼, 文元桥, 孙吴强, 等. 一种基于扩展状态观测器的智能船舶Nomoto模型参数辨识方法[J]. 中国舰船研究, 2023, 18(3): 75–85. doi: 10.19693/j.issn.1673-3185.02552
ZHU M, WEN Y Q, SUN W Q, et al. Extended state observer-based parameter identification of Nomoto model for autonomous vessels[J]. Chinese Journal of Ship Research, 2023, 18(3): 75–85 (in Chinese). doi: 10.19693/j.issn.1673-3185.02552
|
[12] |
杨鑫, 茅云生, 董早鹏, 等. 基于EKF的高速无人艇操纵响应模型参数辨识[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5): 957–961, 967. doi: 10.3963/j.issn.2095-3844.2019.05.031
YANG X, MAO Y S, DONG Z P, et al. Parameter identification of maneuvering response model for high-speed USV based on EKF[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(5): 957–961, 967 (in Chinese). doi: 10.3963/j.issn.2095-3844.2019.05.031
|
[13] |
DONG Z P, YANG X, ZHENG M, et al. Parameter identification of unmanned marine vehicle manoeuvring model based on extended Kalman filter and support vector machine[J]. International Journal of Advanced Robotic Systems, 2019, 16(1): 1–12. doi: 10.1177/1729881418825095
DONG Z P, YANG X, ZHENG M, et al. Parameter identification of unmanned marine vehicle manoeuvring model based on extended Kalman filter and support vector machine[J]. International Journal of Advanced Robotic Systems, 2019, 16(1): 1–12. doi: 10.1177/1729881418825095
|
[14] |
郑涵, 俞孟蕻, 袁伟. 基于反馈粒子滤波的船舶模型参数辨识[J]. 中国舰船研究, 2019, 14(3): 158–162, 178. doi: 10.19693/j.issn.1673-3185.01323
ZHENG H, YU M H, YUAN W. Parameter identification of ship model based on feedback particle filter[J]. Chinese Journal of Ship Research, 2019, 14(3): 158–162, 178 (in Chinese). doi: 10.19693/j.issn.1673-3185.01323
|
[15] |
WANG X D, ZHAO J, LIU S J, et al. A constraint multi-step prediction method for identification of a water-jet vessel in 3DOF planar motion[J]. Ocean Engineering, 2021, 237: 109534. doi: 10.1016/j.oceaneng.2021.109534
|
[16] |
周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6): 21–29, 36.
ZHOU Z M, SHENG Z Y, FENG W S. On manoeuvrability prediction for multipurpose cargo ship[J]. Ship Engineering, 1983(6): 21–29, 36 (in Chinese).
|