Citation: | MENG J M, YANG P, LI J C, et al. Analysis on nonlinear wave loads of a 20 000 TEU container ship based on IORM[J]. Chinese Journal of Ship Research, 2025, 20(2): 1–13 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03500 |
The aim of this paper is to study the influence of wave height on nonlinear wave loads on ships.
A
The results show that the nonlinearity of wave loads on the ship's sectional profile is more pronounced than that of ship motion, and the ship's second-harmonic response increases with wave height.
The second-harmonic phenomenon of nonlinear wave loads is mainly caused by the interaction of the nonlinear wave excitation force due to the changing wetted surface and the hydrostatic restoring force. This phenomenon significantly affects the magnitude of wave loads, the number of load cycles, and structural fatigue damage. Therefore, it is necessary to consider the second-harmonic response components of ship loads in the engineering design stage to enhance ship safety.
[1] |
SUN Z, LIU G J, ZOU L, et al. Investigation of non-linear ship hydroelasticity by CFD-FEM coupling method[J]. Journal of Marine Science and Engineering, 2021, 9(5): 511. doi: 10.3390/jmse9050511
|
[2] |
WANG H X, DUAN W Y, CHEN J K, et al. A numerical method to compute flexible vertical responses of containerships in regular waves[J]. Ocean Engineering, 2022, 266: 112828. doi: 10.1016/j.oceaneng.2022.112828
|
[3] |
DATTA R, GUEDES SOARES C. Analysis of the hydroelastic effect on a container vessel using coupled BEM–FEM method in the time domain[J]. Ships and Offshore Structures, 2020, 15(4): 393–402. doi: 10.1080/17445302.2019.1625848
|
[4] |
LEE I J, KIM E S, KWON S H. A 3D direct coupling method for steady ship hydroelastic analysis[J]. Journal of Fluids and Structures, 2020, 94: 102891. doi: 10.1016/j.jfluidstructs.2020.102891
|
[5] |
CHEN Z W, JIAO J L, WANG Q, et al. CFD-FEM simulation of slamming loads on wedge structure with stiffeners considering hydroelasticity effects[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1591. doi: 10.3390/jmse10111591
|
[6] |
LING H J, YANG P, ZHANG Z W, et al. Complex wave loads and hydroelastic responses of a very large tourism floating platform 'Ocean Diamond'[J]. Ocean Engineering, 2022, 265: 112608. doi: 10.1016/j.oceaneng.2022.112608
|
[7] |
CHEN Z Y, YU C L, DONG P S. Rankine source method analysis for nonlinear hydroelastic responses of a container ship in regular oblique waves[J]. Ocean Engineering, 2019, 187: 106168. doi: 10.1016/j.oceaneng.2019.106168
|
[8] |
CHEN Z Y, GUI H B, DONG P S. Nonlinear time-domain hydroelastic analysis for a container ship in regular and irregular head waves by the Rankine panel method[J]. Ships and Offshore Structures, 2019, 14(6): 631–645. doi: 10.1080/17445302.2018.1535243
|
[9] |
CHEN Z Y, GUI H B, LIAO X Y, et al. Dynamic response analysis of a bulk carrier by nonlinear hydroelastic method[J]. Journal of Marine Science and Engineering, 2021, 9(8): 877. doi: 10.3390/jmse9080877
|
[10] |
JIAO J L, ZHAO Y L, AI Y F, et al. Theoretical and experimental study on nonlinear hydroelastic responses and slamming loads of ship advancing in regular waves[J]. Shock and Vibration, 2018, 2018: 2613832. doi: 10.1155/2018/2613832
|
[11] |
JIAO J L, JIANG Y, ZHANG H, et al. Predictions of ship extreme hydroelastic load responses in harsh irregular waves and hull girder ultimate strength assessment[J]. Applied Sciences, 2019, 9(2): 240. doi: 10.3390/app9020240
|
[12] |
JIAO J L, CHEN Z Y, CHEN C H, et al. Time-domain hydroelastic analysis of nonlinear motions and loads on a large bow-flare ship advancing in high irregular seas[J]. Journal of Marine Science and Technology, 2020, 25(2): 426–454. doi: 10.1007/s00773-019-00652-1
|
[13] |
NI X Y, CHENG X M, LU Y, et al. Evaluation of hydroelastic responses of a 180k DWT large bulk carrier[J]. Ocean Engineering, 2020, 199: 106948. doi: 10.1016/j.oceaneng.2020.106948
|
[14] |
ZHANG K H, REN H L, LI H. Prediction of nonlinear wave loads of ultra large containerships[J]. Journal of Ship Mechanics, 2020, 24(12): 1567–1583.
|
[15] |
王思雨. 超大型集装箱船波浪载荷时域有航速水弹性分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
WANG S Y. Hydroelasticm method in time domain for wave loads calculation of ultra-large container ship with forward speed[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
|
[16] |
周文俊. 基于多域法的船舶时域非线性水动力分析及大幅运动预报[D]. 上海: 上海交通大学, 2020.
ZHOU W J. Time-domain nonlinear hydrodynamic analysis and large amplitude motion prediction of ship based on the multi-domain method[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
|
[17] |
周文俊, 徐萍, 周华伟, 等. 基于多层面改进多域法的航行船舶时域水动力分析[J]. 船舶力学, 2023, 27(4): 481–497.
ZHOU W J, XU P, ZHOU H W, et al. Time-domain hydrodynamic analysis of ship with forward speed based on multi-domain method with multi-level improvement[J]. Journal of Ship Mechanics, 2023, 27(4): 481–497 (in Chinese).
|
[18] |
张楷弘. 大外飘船舶非线性波浪载荷时域水弹性分析方法与应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
ZHANG K H. Research on nonlinear wave loads' time-domain hydroelastic analysis method and application of ships with large bow flare[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
|
[19] |
徐志亭, 赵超, 王福花. 非线性砰击载荷对某大外飘型船舶疲劳损伤的影响[J]. 中国舰船研究, 2019, 14(6): 180–185. doi: 10.19693/j.issn.1673-3185.01491
XU Z T, ZHAO C, WANG F H. Effect of nonlinear slamming loads on the fatigue damage of a ship with large flare[J]. Chinese Journal of Ship Research, 2019, 14(6): 180–185 (in Chinese). doi: 10.19693/j.issn.1673-3185.01491
|
[20] |
罗凯, 王海洋, 唐颖, 等. 基于水弹性方法的船体非线性波浪载荷预报[J]. 船舶工程, 2018, 40(增刊1): 75–78, 201.
LUO K, WANG H Y, TANG Y, et al. Study on nonlinear loads forecasting of ship hull in wave based on hydroelastic method[J]. Ship Engineering, 2018, 40(Supp 1): 75–78, 201.
|
[21] |
YANG P. Welcome to OpenWALAS [EB/OL]. (2023-07-27) [2024-01-12]. https://openwalas.github.io/.
|
[1] | XIONG Qipeng, LIU Jie, JIN Yong, LI Ruiqing, LUO Bin. Applicability of different anti-shock analysis methods to water-lubricated bearings[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03611 |
[2] | JIA Zhenglang, LIU Xinyi, ZHANG Huanhuan, WU Weijun, TAO Li. Time-domain shielding effectiveness analysis based on DGTD method[J]. Chinese Journal of Ship Research, 2023, 18(4): 84-94. DOI: 10.19693/j.issn.1673-3185.03140 |
[3] | SUN Lei, LU Tingting, DENG Xiaoxiao, LIU Changfeng. Fully nonlinear numerical simulation on hydrodynamic characteristics of FPSO[J]. Chinese Journal of Ship Research, 2020, 15(1): 95-106. DOI: 10.19693/j.issn.1673-3185.01726 |
[4] | ZHANG Yahui, MA Shan, DUAN Wenyang. Linear time-domain strip method for ship motion prediction[J]. Chinese Journal of Ship Research, 2018, 13(S1): 1-6, 28. DOI: 10.19693/j.issn.1673-3185.01261 |
[5] | LI Haitao, LIU Jianhu, HE Bin, WANG Haikun, PEI Du. Simplified method of shock resistant connection for shipboard equipment based on time domain analysis[J]. Chinese Journal of Ship Research, 2018, 13(3): 85-89. DOI: 10.19693/j.issn.1673-3185.01157 |
[6] | XIAO Wenyong, HUANG Ni. 锥环柱结构总体匹配强度性能研究[J]. Chinese Journal of Ship Research, 2015, 10(4): 65-70. DOI: 10.3969/j.issn.1673-3185.2015.04.010 |
[7] | QIN Yezhi, RUAN Rengzhong. 吊舱式电力推进船舶螺旋桨匹配设计仿真研究[J]. Chinese Journal of Ship Research, 2014, 9(6): 65-72. DOI: 10.3969/j.issn.1673-3185.2014.06.012 |
[8] | LIU Hongguang, ZHANG Chongmeng, CHEN Wei, ZOU Yi. 舰艇干扰因素对速度匹配传递对准性能的影响[J]. Chinese Journal of Ship Research, 2013, 8(4): 86-91. DOI: 10.3969/j.issn.1673-3185.2013.04.015 |
[9] | Wu Hongbin, Yi Xueqin. 基于HMC1053的低频磁场三维时域检测技术[J]. Chinese Journal of Ship Research, 2007, 2(3): 72-77. DOI: 10.3969/j.issn.1673-3185.2007.03.018 |
[10] | Yao Xiongliang, Qian Dejin, Zhang Yan . Numerical Analysis Method for Sound Radiation of Underwater Structure in Time Domain[J]. Chinese Journal of Ship Research, 2006, 1(5-6): 30-35. DOI: 10.3969/j.issn.1673-3185.2006.06.007 |