YANG L M, LIU S C, PEI Z Y, et al. Numerical analysis on bubble coalescence characteristics of wetting surface[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–11 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03267
Citation: YANG L M, LIU S C, PEI Z Y, et al. Numerical analysis on bubble coalescence characteristics of wetting surface[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–11 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03267

Numerical analysis on bubble coalescence characteristics of wetting surface

More Information
  • Received Date: November 02, 2023
  • Revised Date: December 23, 2023
  • Available Online: January 15, 2024
© 2024 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Objectives 

    For the development of composite drag reduction technology of super-hydrophobic surface and bubbles, the coalescence characteristics of bubbles on wetting surface are studied.

    Methods 

    Based on the volume of fluid (VOF) method, a numerical model of bubble coalescence on an underwater wetting surface is established. It is used to analyze the bubble coalescence characteristics on wetting surfaces and reveal the influence of surface wettability, bubble spacing and bubble size on bubble coalescence characteristics.

    Results 

    The results show that the increase of surface contact angle on wetting surfaces and the decrease of bubble spacing make it easier for bubbles to coalesce. Increasing the bubble size will slow down the spreading speed of bubbles on the surface, which is also not conducive to accelerating bubble coalescence.

    Conclusion 

    This study can provide a reference for the coupling design of super-hydrophobic surface and bubble drag reduction technology.

  • [1]
    WU H, OU Y P, YE Q. Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity[J]. Ocean Engineering, 2019, 183: 236–248. doi: 10.1016/j.oceaneng.2019.04.088
    [2]
    秦世杰, 季盛, 孙帅, 等. 船舶气体润滑减阻应用现状及展望[J]. 中国舰船研究, 2023, 18(6): 1–10. doi: 10.19693/j.issn.1673-3185.03101

    QIN S J, JI S, SUN S, at al. Current state and prospects on applications of ship drag reduction using air lubrication[J]. Chinese Journal of Ship Research, 2023, 18(6): 1–10 (in Chinese). doi: 10.19693/j.issn.1673-3185.03101
    [3]
    徐天南. 国内外船舶气体减阻技术应用进展[J]. 船舶, 2021, 32(06): 69–74.

    XU T N. Application of air lubrication drag reduction technology at home and abroad[J]. Ship & Boat, 2021, 32(06): 69–74 (in Chinses).
    [4]
    LOHSE D. Bubble puzzles: From fundamentals to applications[J]. Physical Review Fluids, 2018, 3(11): 110504. doi: 10.1103/PhysRevFluids.3.110504
    [5]
    XIAO Y H, ZHENG J, HE Y M, et al. Droplet and bubble wetting behaviors: The roles of surface wettability and roughness[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 653: 130008. doi: 10.1016/j.colsurfa.2022.130008
    [6]
    FUKUDA K, TOKUNAGA J, NOBUNAGA T, et al. Frictional drag reduction with air lubricant over a super-water-repellent surface[J]. Journal of Marine Science and Technology, 2000, 5: 123–130. doi: 10.1007/s007730070009
    [7]
    LATORRE R, MILLER A, PHILIPS R. Micro-bubble resistance reduction on a model SES catamaran[J]. Ocean Engineering, 2003, 30(17): 2297–2309. doi: 10.1016/S0029-8018(03)00079-9
    [8]
    KITAGAWA A, DENISSENKO P, MURAI Y. Effect of wall surface wettability on collective behavior of hydrogen microbubbles rising along a wall[J]. Experimental Thermal and Fluid Science, 2017, 80: 126–138. doi: 10.1016/j.expthermflusci.2016.08.010
    [9]
    叶煜航, 凃程旭, 包福兵, 等. 不同壁面取向下超疏水平面直轨道上的气泡滑移[J]. 力学学报, 2021, 53(4): 962–972. doi: 10.6052/0459-1879-20-405

    YE Y H, TU C X, BAO F B, et al. Bubble slipping on a superhydrophobic planar straight trajectory under different surface orientations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 962–972 (in Chinese). doi: 10.6052/0459-1879-20-405
    [10]
    KIM J, LEE J S. Surface-wettability-induced sliding bubble dynamics and its effects on convective heat transfer[J]. Applied Thermal Engineering, 2017, 113: 639–652. doi: 10.1016/j.applthermaleng.2016.11.097
    [11]
    唐子建, 杜伟, 杜鹏, 等. 气泡碰撞亲疏水曲壁的行为特性研究[J]. 力学学报, 2022, 54(9): 2401–2408

    TANG Z J, DU W, DU P, at al. Study on the behavior of bubbles colliding with hydrophilic and hydrophobic curved walls[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2401–2408 (in Chinese).
    [12]
    胡海豹, 王德政, 鲍路瑶, 等. 基于润湿阶跃的水下大尺度气膜封存方法[J]. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701

    HU H B, WANG D Z, BAO L Y, at al. Maintaining large-scale gas layer by creating wettability difference on surfaces under water[J]. Acta Physica. Sinica., 2016, 65(13): 134701 (in Chinese). doi: 10.7498/aps.65.134701
    [13]
    孙远志, 邬智宇, 张伟, 等. 非均匀润湿性表面的气泡动力学特性[J]. 节能技术, 2019, 37(2): 166–169,173. doi: 10.3969/j.issn.1002-6339.2019.02.015

    SUN Y Z, WU Z Y, ZHANG W, et al. Bubble dynamics of non-uniform wetting surface[J]. Energy Conservation Technology, 2019, 37(2): 166–169,173 (in Chinese). doi: 10.3969/j.issn.1002-6339.2019.02.015
    [14]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335–354. doi: 10.1016/0021-9991(92)90240-Y
    [15]
    BUTT H J, LIU J, KOYNOV K, et al. Contact angle hysteresis[J]. Current Opinion in Colloid & Interface Science, 2022, 59: 101574.
    [16]
    李昕晨. 双气泡聚并的流体力学行为研究[D]. 北京: 北京化工大学, 2015.

    LI X C. Study of hydrodynamics behavior of two bubbles coalescence[D]. Beijing: Beijing University of Chemical Technology, 2015 (in Chinese).
    [17]
    赵超, 吕明利, 贾文广. 微织结构与微气泡复合减阻数值模拟与特性分析[J]. 船舶工程, 2022, 44(4): 69–74,80.

    ZHAO C, LV M L, JIA W G. Numerical Simulation and Characteristic Analysis of Composite Drag Reduction of Micro-Woven Structure and Micro-Bubble[J]. Ship Engineering, 2022, 44(4): 69–74,80 (in Chinese).
    [18]
    ZHANG Y, CHEN K, YOU Y, et al. Coalescence of two initially spherical bubbles: Dual effect of liquid viscosity[J]. International Journal of Heat and Fluid Flow, 2018, 72: 61–72. doi: 10.1016/j.ijheatfluidflow.2018.05.009
    [19]
    KUMAR A, RAY B, BISWAS G. Dynamics of two coaxially rising gas bubbles[J]. Physics of Fluids, 2021, 33(5): 052106. doi: 10.1063/5.0048595
    [20]
    韩蕊. 多气泡(气泡群)非线性耦合作用及融合特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    HAN R. Study on the nonlinear interaction and coalescence of multiple bubbles[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [21]
    DRELICH J W, BOINOVICH L, CHIBOWSKI E, et al. Contact angles history of over 200 years of open questions[J]. Surface Innovations, 2019, 8(1/2): 3–27.
    [22]
    KIBAR A, OZBAY R, SARSHAR M A, et al. Bubble movement on inclined hydrophobic surfaces[J]. Langmuir, 2017, 33(43): 12016–12027. doi: 10.1021/acs.langmuir.7b02831
    [23]
    叶煜航. 超亲气壁面上气泡倾斜滑移及测量方法研究[D]. 杭州: 中国计量大学, 2021.

    YE Y H. Study on the bubble sliding on the inclined superaerophilic surfaces and related measurement methods[D]. Hangzhou: China Jiliang University, 2021 (in Chinese).
    [24]
    朱智成. 气泡与复杂壁面作用的动力学研究[D]. 合肥: 中国科学技术大学, 2022.

    ZHU Z C. Dynamics of bubble motion on complex surface[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
    [25]
    SHAW D B, DEIKE L. Surface bubble coalescence[J]. Journal of Fluid Mechanics, 2021, 915: A105. doi: 10.1017/jfm.2021.173
    [26]
    吕雅琪. 气泡融合及其在剪切作用下的数值研究[D]. 杭州: 中国计量学院, 2016.

    LV Y Q. Numerical Research on Bubble Merging and Its Motion in Shear Flow[D]. Hangzhou: China Jiliang University. 2016 (in Chinese).
    [27]
    李国胜, 韩加展, 邓丽君, 等. 气泡在煤炭表面的碰撞和黏附过程[J]. 煤炭学报, 2016, 41(11): 2841–2846.

    LI G S, HAN J Z, DENG L J, et al. Collision and adhesion process of air bubbles on coal surface[J]. Journal of China Coal Society, 2016, 41(11): 2841–2846 (in Chinese).

Catalog

    Article views (129) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return