Citation: | SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27–44. DOI: 10.19693/j.issn.1673-3185.02939 |
[1] |
潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44–51.
PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44–51 (in Chinese).
|
[2] |
李德远, 吴汪洋, 李晓晨. 军用UUV的发展与应用前景展望[J]. 舰船电子工程, 2012, 32(4): 22–24, 35. doi: 10.3969/j.issn.1627-9730.2012.04.008
LI D Y, WU W Y, LI X C. Current status and future directions of navy unmanned underwater vehicles[J]. Ship Electronic Engineering, 2012, 32(4): 22–24, 35 (in Chinese). doi: 10.3969/j.issn.1627-9730.2012.04.008
|
[3] |
钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1–30.
QIAN D, ZHAO J, YANG Y. Development trend of military UUV (Ⅰ): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 1–30 (in Chinese).
|
[4] |
李经. 水下无人作战系统装备现状及发展趋势[J]. 舰船科学技术, 2017, 39(1): 1–5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001
LI J. Existence and development trend of navy autonomous underwater combat system[J]. Ship Science and Technology, 2017, 39(1): 1–5, 36 (in Chinese). doi: 10.3404/j.issn.1672-7619.2017.01.001
|
[5] |
钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215–225. doi: 10.11993/j.issn.2096-3920.2017.03.001
ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215–225 (in Chinese). doi: 10.11993/j.issn.2096-3920.2017.03.001
|
[6] |
吕达. 翼身融合水下滑翔机稳定面设计及滑翔性能分析[D]. 西安: 西北工业大学, 2020.
LYU D. Design of stable surface and gliding performance analysis of wing-body fusion underwater glider[D]. Xi'an: Northwestern Polytechnical University, 2020 (in Chinese).
|
[7] |
张栋. 牛鼻鲼游动过程中柔性变形对水动力影响研究[D]. 西安: 西北工业大学, 2020.
ZHANG D. Research on the influence of flexible deformation on hydrodynamics during the swimming process of the cow-nosed ray[D]. Xi'an: Northwestern Polytechnical University, 2020 (in Chinese).
|
[8] |
聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(5): 310–318.
NIE W D, MA L, ZHANG B, et al. A brief analysis of United States unmanned underwater combat system[J]. Journal of Unmanned Undersea Systems, 2017, 25(5): 310–318 (in Chinese).
|
[9] |
钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273–282. doi: 10.11993/j.issn.2096-3920.2018.04.001
ZHONG H W, LI G L, SONG L H, et al. Development of large displacement unmanned undersea vehicle in foreign countries: a review[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273–282 (in Chinese). doi: 10.11993/j.issn.2096-3920.2018.04.001
|
[10] |
LI J L, WANG P, DONG H C, et al. Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization[J]. Applied Soft Computing, 2022, 122: 108798. doi: 10.1016/j.asoc.2022.108798
|
[11] |
LI J L, WANG X J, WANG P, et al. Shape optimization for a conventional underwater glider to decrease average periodic resistance[J]. China Ocean Engineering, 2021, 35(5): 724–735. doi: 10.1007/s13344-021-0064-6
|
[12] |
ZHANG N, WANG P, DONG H C. Research on high-dimensional model representation with various metamodels[J]. Engineering Optimization, 2019, 51(8): 1336–1351. doi: 10.1080/0305215X.2018.1521398
|
[13] |
FU C B, WANG P, ZHAO L, et al. A distance correlation-based Kriging modeling method for high-dimensional problems[J]. Knowledge-Based Systems, 2020, 206: 106356. doi: 10.1016/j.knosys.2020.106356
|
[14] |
MOHAMMAD ZADEH P, MEHMANI A, MESSAC A. High fidelity multidisciplinary design optimization of a wing using the interaction of low and high fidelity models[J]. Optimization and Engineering, 2016, 17(3): 503–532. doi: 10.1007/s11081-015-9284-z
|
[15] |
DONG H C, SONG B W, WANG P, et al. Multi-fidelity information fusion based on prediction of Kriging[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1267–1280. doi: 10.1007/s00158-014-1213-9
|
[16] |
李学斌, 甘霖. AUV总体概念设计中的多学科和多目标优化研究[J]. 海洋技术, 2008, 27(2): 77–82. doi: 10.3969/j.issn.1003-2029.2008.02.018
LI X B, GAN L. Study on multi-disciplinary design and multi-objective problem in conceptual design of AUV[J]. Ocean Technology, 2008, 27(2): 77–82 (in Chinese). doi: 10.3969/j.issn.1003-2029.2008.02.018
|
[17] |
王建. 多学科优化设计在水下无人航行器设计中的应用研究[D]. 哈尔滨: 哈尔滨工程大学.
WANG J. Application of multi-discipline design optimization method for design of unmanned underwater vhicles[D]. Harbin: Harbin Engineering University (in Chinese).
|
[18] |
LUO W L, LYU W. An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots[J]. Ocean Engineering, 2015, 104: 686–697. doi: 10.1016/j.oceaneng.2015.06.011
|
[19] |
ZHANG X H, LI Z, WANG P, et al. Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure[J]. Ocean Engineering, 2022, 249: 110871. doi: 10.1016/j.oceaneng.2022.110871
|
[20] |
WEI R F, SHEN K C, PAN G. Optimal design of trapezoid stiffeners of composite cylindrical shells subjected to hydrostatic pressure[J]. Thin-Walled Structures, 2021, 166: 108002. doi: 10.1016/j.tws.2021.108002
|
[21] |
RAHIMI G H, ZANDI M, RASOULI S F. Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading[J]. Aerospace Science and Technology, 2013, 24(1): 198–203. doi: 10.1016/j.ast.2011.11.007
|
[22] |
何衍儒, 宋保维, 曹永辉. 翼身融合自主式水下航行器的多泡结构耐压舱分步优化设计[J]. 西北工业大学学报, 2018, 36(4): 664–670. doi: 10.3969/j.issn.1000-2758.2018.04.009
HE Y R, SONG B W, CAO Y H. Multi-step structural optimization design of multi-bubble pressure cabin in the autonomous underwater vehicle with blended-wing-body[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 664–670 (in Chinese). doi: 10.3969/j.issn.1000-2758.2018.04.009
|
[23] |
伍莉, 孟凡明, 陈小宁, 等. 藕节形大深度潜水器耐压壳体优化设计[J]. 船舶力学, 2008, 12(1): 100–109. doi: 10.3969/j.issn.1007-7294.2008.01.015
WU L, MENG F M, CHEN X N, et al. Optimum design of multiple intersecting spheres great deep-submerged pressure hull[J]. Journal of Ship Mechanics, 2008, 12(1): 100–109 (in Chinese). doi: 10.3969/j.issn.1007-7294.2008.01.015
|
[24] |
宋保维, 成鹏飞, 曹永辉, 等. 藕节形耐压壳体强度与稳定性有限元分析[J]. 计算机仿真, 2013, 30(2): 38–41, 246. doi: 10.3969/j.issn.1006-9348.2013.02.010
SONG B W, CHENG P F, CAO Y H, et al. Strength and stability study of multiple intersecting spheres for pressure hull[J]. Computer Simulation, 2013, 30(2): 38–41, 246 (in Chinese). doi: 10.3969/j.issn.1006-9348.2013.02.010
|
[25] |
李星升, 关静岩. 泵喷推进器在某水下航行器降噪方面的应用[J]. 数字海洋与水下攻防, 2018, 1(2): 51–56.
LI X S, GUAN J Y. Application of pump-jet propulsor in noise reduction of underwater vehicle[J]. Digital Ocean & Underwater Warfare, 2018, 1(2): 51–56 (in Chinese).
|
[26] |
方尔正, 周子凌, 桂晨阳. 水下滑翔机原理与应用[J]. 国防科技工业, 2020(8): 66–68.
FANG E Z, ZHOU Z L, GUI C Y. The principle and application of underwater glider[J]. Defence Science & Technology Industry, 2020(8): 66–68 (in Chinese).
|
[27] |
邢城, 潘光, 黄桥高. 仿蝠鲼柔性潜水器翼型流场性能分析[J]. 数字海洋与水下攻防, 2020, 3(3): 265–270. doi: 10.19838/j.issn.2096-5753.2020.03.015
XING C, PAN G, HUANG Q G. Performance analysis of airfoil flow field of a mannequin-like flexible submersible[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 265–270 (in Chinese). doi: 10.19838/j.issn.2096-5753.2020.03.015
|
[28] |
胡小平. 导航技术基础[M]. 北京: 国防工业出版社, 2015: 123-124.
HU X P. Basics of navigation technology[M]. Beijing: National Defense Industry Press, 2015: 123-124 (in Chinese).
|
[29] |
周玲. 自主水下潜器海底地形辅助导航技术研究[D]. 南京: 东南大学, 2018.
ZHOU L. On seabed terrain aided navigation technology for autonomous underwater vehicles[D]. Nanjing: Southeast University, 2018 (in Chinese).
|
[30] |
彭富清, 霍立业. 海洋地球物理导航[J]. 地球物理学进展, 2007, 22(3): 759–764. doi: 10.3969/j.issn.1004-2903.2007.03.015
PENG F Q, HUO L Y. Marine geophysical navigation[J]. Progress in Geophysics, 2007, 22(3): 759–764 (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.03.015
|
[31] |
黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232–253. doi: 10.11993/j.issn.2096-3920.2019.03.002
HUANG Y L, ZHANG Y G, ZHAO Y X. Review of autonomous undersea vehicle navigation methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232–253 (in Chinese). doi: 10.11993/j.issn.2096-3920.2019.03.002
|
[32] |
王博, 周明龙. 水下重力辅助导航适配区选取的研究进展[J]. 导航定位学报, 2020, 8(3): 32–39. doi: 10.3969/j.issn.2095-4999.2020.03.005
WANG B, ZHOU M L. Perspective on matching area selection technology for underwater gravity aided navigation[J]. Journal of Navigation and Positioning, 2020, 8(3): 32–39 (in Chinese). doi: 10.3969/j.issn.2095-4999.2020.03.005
|
[33] |
刘莉娜, 刘任庆. 基于捷联惯性导航的组合导航系统研究[J]. 现代电子技术, 2009, 32(3): 111–113. doi: 10.3969/j.issn.1004-373X.2009.03.035
LIU L N, LIU R Q. Research of integrated navigation system based on strapdown inertial navigation system[J]. Modern Electronics Technique, 2009, 32(3): 111–113 (in Chinese). doi: 10.3969/j.issn.1004-373X.2009.03.035
|
[34] |
CHANG L B, HU B Q. Robust initial attitude alignment for SINS/DVL[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 2016–2021. doi: 10.1109/TMECH.2018.2834917
|
[35] |
BATISTA P, SILVESTRE C, OLIVEIRA P. GES integrated LBL/USBL navigation system for underwater vehicles[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Maui, HI, USA: IEEE, 2012: 6609–6614.
|
[36] |
ZHANG L C, LI Y C, LIU L, et al. Cooperative navigation based on cross entropy: dual leaders[J]. IEEE Access, 2019, 7: 151378–151388. doi: 10.1109/ACCESS.2019.2947541
|
[37] |
MENSING C, NIELSEN J J. Centralized cooperative positioning and tracking with realistic communications constraints[C]//2010 7th Workshop on Positioning, Navigation and Communication. Dresden, Germany: IEEE, 2010: 215–223.
|
[38] |
GOEL S. A distributed cooperative UAV swarm localization system: development and analysis[C]//Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation. Portland, Oregon, 2017: 2501–2518.
|
[39] |
张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289–297. doi: 10.11990/jheu.201909039
ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289–297 (in Chinese). doi: 10.11990/jheu.201909039
|
[40] |
CUI R X, GE S S, VOON EE HOW B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17–18): 1491–1502. doi: 10.1016/j.oceaneng.2010.07.006
|
[41] |
潘无为. 分布式多水下机器人编队控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
PAN W W. Study on distributed formation control of multiple autonomous underwater vehicles[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
|
[42] |
FIORELLI E, LEONARD N E, BHATTA P, et al. Multi-AUV control and adaptive sampling in Monterey Bay[J]. IEEE Journal of Oceanic Engineering, 2006, 31(4): 935–948. doi: 10.1109/JOE.2006.880429
|
[43] |
YAN Z P, LIU Y B, ZHOU J J, et al. Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays[J]. Chinese Physics B, 2017, 26(4): 040203. doi: 10.1088/1674-1056/26/4/040203
|
[44] |
GAO Z Y, GUO G. Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications[J]. IEEE Access, 2018, 6: 27902–27911. doi: 10.1109/ACCESS.2018.2838121
|
1. |
彭浩,李维波,黄康政,高俊卓. 基于BWO-SVM的AUV推进系统液压故障诊断. 机床与液压. 2025(03): 199-203 .
![]() | |
2. |
许朝龙,解志斌,宋科宁. 基于轻量化网络的水下目标检测算法. 无线电工程. 2025(02): 264-270 .
![]() | |
3. |
张继文,徐博,王储岩,王朝阳. 基于神经动力学模型预测的多AUV编队自适应控制方案. 中国舰船研究. 2025(01): 326-339 .
![]() | |
4. |
王一,汪旋,王检耀,李相衡. AUV近水面波浪跟随控制及环境参数分析. 中国舰船研究. 2025(01): 340-349 .
![]() | |
5. |
熊露,李京书,饶喆,霍治帆. 水下航行器地形高程匹配算法研究综述. 水下无人系统学报. 2025(01): 1-14 .
![]() | |
6. |
余敏,刘浩煜,张文凯,汤奇荣. 自主水下航行器群探测行为关键技术分析. 舰船科学技术. 2025(03): 111-116 .
![]() | |
7. |
张犇,朱亚平,路勇. 基于环型线圈互感计算的WPT系统设计研究. 电力电子技术. 2024(01): 60-63 .
![]() | |
8. |
陈露,赵德鑫,王俊,高虹,陈迎亮. 基于通信载荷声纹特征的身份认证方法. 水下无人系统学报. 2024(01): 97-104 .
![]() | |
9. |
张严,朱伟良,程菲. 无人潜航器解算目标运动要素的一种方法. 现代电子技术. 2024(09): 173-176 .
![]() | |
10. |
齐嘉慧,崔培,姜楷娜,吕俊军. 一种UUV集群抵近目标侦测决策效率评估方法研究. 数字海洋与水下攻防. 2024(02): 231-235 .
![]() | |
11. |
邱志明,孟祥尧,马焱,王亮,肖玉杰. 海上无人系统跨域协同运用与技术发展. 水下无人系统学报. 2024(02): 184-193 .
![]() | |
12. |
于洋,孙思卿,张立川,潘光,王鹏. 自主水下航行器集群组网技术发展与展望. 水下无人系统学报. 2024(02): 194-207 .
![]() | |
13. |
付少波,关夏威,张昊. 基于自抗扰理论的欠驱动AUV无模型自适应路径跟踪控制. 水下无人系统学报. 2024(02): 328-336+375 .
![]() | |
14. |
吴昌脉,景易凡,王斌,阮华. 水下无人航行器多目标优化设计研究进展. 舰船科学技术. 2024(10): 9-15 .
![]() | |
15. |
石文会,金丽娜,马楠楠. 基于MPC的AUV轨迹跟踪控制研究. 现代信息科技. 2024(10): 188-193 .
![]() | |
16. |
王浩亮,任恩帅,卢丽宇,刘陆,古楠,彭周华. 面向海底管道巡检的AUV三维自适应路径跟踪. 船舶工程. 2024(04): 166-174 .
![]() | |
17. |
董鹏,汪超. 国外军用UUV发展现状与趋势. 机电设备. 2024(03): 31-36 .
![]() | |
18. |
赵高阳,刘勇,朱平杰,向冰,周洪娟. 基于有限元法的水下航行器地磁异常模拟研究. 系统工程与电子技术. 2024(07): 2191-2200 .
![]() | |
19. |
刘肖佐,王鹏,何瑞轩,李靖璐,董华超,温志文. 基于知识挖掘的HDMR优化方法与工程应用. 机械工程学报. 2024(13): 122-129 .
![]() | |
20. |
周楠,魏佳广,谢维维,冯晓伟. 海管监测ARV总体设计与试验. 数字海洋与水下攻防. 2024(04): 389-396 .
![]() | |
21. |
刘新宇,赵俊涛,佘莹莹,张英浩. IACO-GA-IPSO融合算法AUV三维全局路径规划. 舰船科学技术. 2024(18): 99-105 .
![]() | |
22. |
张志伟,方泽江,何润民,赵琪,朱兆彤. 美军水下特种作战装备的发展现状及趋势分析. 水下无人系统学报. 2024(05): 962-970 .
![]() | |
23. |
王旭,李金明,毛昭勇,丁文俊. 基于组合赋权TOPSIS的智能UUV目标识别与反对抗效能评估. 水下无人系统学报. 2024(05): 779-786 .
![]() | |
24. |
张翔鸢,花吉. 国外超大型无人潜航器发展与运用研究. 中国舰船研究. 2024(05): 17-27 .
![]() | |
25. |
赵大刚,张顺,高适,钟祥海. 海流对水下航行器运动及载荷影响研究综述. 中国舰船研究. 2024(05): 1-16 .
![]() | |
26. |
管志光,吴昊,王学林,林明星. 基于模糊PID的小型水下机器人运动控制研究. 火力与指挥控制. 2024(10): 111-117 .
![]() | |
27. |
高裕浩,何腾武,赵敏. 基于OpenMDAO的BLISS-2000多学科设计优化:流程、策略与参数研究. 中国舰船研究. 2024(06): 135-149 .
![]() | |
28. |
王兆杰,茆明,熊进辉,彭涛,李东鑫,孙牧,刘浩. 美军有人/无人协同反潜体系及杀伤链发展分析. 舰船科学技术. 2024(23): 184-189 .
![]() | |
29. |
赵卓,穆原子,周宁,杨俊飞. 基于船载无人机的海洋广域通信系统设计. 海洋技术学报. 2024(06): 12-19 .
![]() | |
30. |
李红,刘恒宇. 基于磁梯度方向的AUV地磁感知导航定向算法. 西安邮电大学学报. 2024(06): 27-33 .
![]() | |
31. |
武帅,张璨,李季,蔡春伟. 基于动态行波磁场的水下自主航行器无线电能传输系统. 导航与控制. 2024(Z1): 69-77 .
![]() | |
32. |
邱志明,马焱,孟祥尧,陈建华,冯炜. 水下无人装备前沿发展趋势与关键技术分析. 水下无人系统学报. 2023(01): 1-9 .
![]() | |
33. |
邱志明,孟祥尧,马焱,陈轶,冯炜. 海上无人系统发展及关键技术研究. 中国工程科学. 2023(03): 74-83 .
![]() | |
34. |
潘荣军,张伟. 基于机器学习的自主航行技术研究:探索人工智能在航海领域的应用. 中国水运(下半月). 2023(07): 46-49 .
![]() | |
35. |
金志刚,尹欢,洪叶,苏毅珊. 面向海洋监测的海空地协同边缘架构与拓扑控制. 西安交通大学学报. 2023(06): 47-55 .
![]() | |
36. |
王立志,石瑶,刘凯茜. 自主水下航行器技术发展与标准化需求. 船舶标准化与质量. 2023(01): 20-25 .
![]() | |
37. |
张亚军. 大型AUV及其水面侦察技术浅析. 数字海洋与水下攻防. 2023(04): 406-412 .
![]() | |
38. |
包艺,张庆辉,刘勇锋,李广华,张淼,陈效鹏,杜鹏. 水下仿生流场探测技术研究进展. 数字海洋与水下攻防. 2023(04): 458-471 .
![]() | |
39. |
李阁阁,贾世鲲,赵海侗,兰世泉,孙通帅,杨绍琼. 基于UUV的目标非声探测技术发展及趋势分析. 水下无人系统学报. 2023(04): 510-520 .
![]() | |
40. |
张宇新,李鹏,魏博,秦洪德. 水下航行器阻力计算及结构设计. 应用科技. 2023(05): 141-148 .
![]() | |
41. |
张怀亮. 水下能源供给平台电能供给技术发展现状及趋势. 船电技术. 2023(12): 15-19 .
![]() | |
42. |
童峰,周跃海,陈东升,李姜辉,张小康. 异构无人潜水器水声通信技术发展综述. 哈尔滨工程大学学报. 2023(11): 1963-1976 .
![]() | |
43. |
翟理,汪洋,胡利民,刘国海,刘亚兵,马恩林. 水下大功率高速电机SiC MOSFET逆变器设计及对比. 水下无人系统学报. 2023(06): 966-975 .
![]() | |
44. |
傅晓晗,付学志,王敏庆. 水下运载器声学性能预估. 水下无人系统学报. 2023(06): 871-877 .
![]() | |
45. |
李玉凯,吴影生,胡欲立. 新型Halbach阵列永磁屏蔽电机设计与优化研究. 微电机. 2023(12): 1-8 .
![]() | |
46. |
周道先,张吟龙,徐高飞,杨雨沱,梁炜. 基于形变卷积和深层聚合网络的水下文物检测. 仪器仪表学报. 2023(11): 185-195 .
![]() | |
47. |
潘荣军,张伟. 基于机器学习的自主航行技术研究:探索人工智能在航海领域的应用. 中国水运. 2023(14): 46-49 .
![]() |