SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27–44. DOI: 10.19693/j.issn.1673-3185.02939
Citation: SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27–44. DOI: 10.19693/j.issn.1673-3185.02939

Development trend and key technologies of autonomous underwater vehicles

More Information
  • Received Date: June 01, 2022
  • Revised Date: September 07, 2022
  • Available Online: September 07, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • In order to promote and guide the development of autonomous underwater vehicles (AUVs) in China, this paper summarizes the research status of AUVs at home and abroad, and puts forward the development trends of serialization, grouping, systematization and large-scale development. Key AUV technologies such as overall multidisciplinary optimal design, structure and material design, power and propulsion, navigation and control, detection and communication are discussed. Finally, development opinions are put forward on how to make better use of AUVs to navigate the oceans and achieve the strategic goals of "ocean entry, ocean exploration and ocean utilization".
  • [1]
    潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44–51.

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44–51 (in Chinese).
    [2]
    李德远, 吴汪洋, 李晓晨. 军用UUV的发展与应用前景展望[J]. 舰船电子工程, 2012, 32(4): 22–24, 35. doi: 10.3969/j.issn.1627-9730.2012.04.008

    LI D Y, WU W Y, LI X C. Current status and future directions of navy unmanned underwater vehicles[J]. Ship Electronic Engineering, 2012, 32(4): 22–24, 35 (in Chinese). doi: 10.3969/j.issn.1627-9730.2012.04.008
    [3]
    钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1–30.

    QIAN D, ZHAO J, YANG Y. Development trend of military UUV (Ⅰ): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 1–30 (in Chinese).
    [4]
    李经. 水下无人作战系统装备现状及发展趋势[J]. 舰船科学技术, 2017, 39(1): 1–5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001

    LI J. Existence and development trend of navy autonomous underwater combat system[J]. Ship Science and Technology, 2017, 39(1): 1–5, 36 (in Chinese). doi: 10.3404/j.issn.1672-7619.2017.01.001
    [5]
    钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215–225. doi: 10.11993/j.issn.2096-3920.2017.03.001

    ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215–225 (in Chinese). doi: 10.11993/j.issn.2096-3920.2017.03.001
    [6]
    吕达. 翼身融合水下滑翔机稳定面设计及滑翔性能分析[D]. 西安: 西北工业大学, 2020.

    LYU D. Design of stable surface and gliding performance analysis of wing-body fusion underwater glider[D]. Xi'an: Northwestern Polytechnical University, 2020 (in Chinese).
    [7]
    张栋. 牛鼻鲼游动过程中柔性变形对水动力影响研究[D]. 西安: 西北工业大学, 2020.

    ZHANG D. Research on the influence of flexible deformation on hydrodynamics during the swimming process of the cow-nosed ray[D]. Xi'an: Northwestern Polytechnical University, 2020 (in Chinese).
    [8]
    聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(5): 310–318.

    NIE W D, MA L, ZHANG B, et al. A brief analysis of United States unmanned underwater combat system[J]. Journal of Unmanned Undersea Systems, 2017, 25(5): 310–318 (in Chinese).
    [9]
    钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273–282. doi: 10.11993/j.issn.2096-3920.2018.04.001

    ZHONG H W, LI G L, SONG L H, et al. Development of large displacement unmanned undersea vehicle in foreign countries: a review[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273–282 (in Chinese). doi: 10.11993/j.issn.2096-3920.2018.04.001
    [10]
    LI J L, WANG P, DONG H C, et al. Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization[J]. Applied Soft Computing, 2022, 122: 108798. doi: 10.1016/j.asoc.2022.108798
    [11]
    LI J L, WANG X J, WANG P, et al. Shape optimization for a conventional underwater glider to decrease average periodic resistance[J]. China Ocean Engineering, 2021, 35(5): 724–735. doi: 10.1007/s13344-021-0064-6
    [12]
    ZHANG N, WANG P, DONG H C. Research on high-dimensional model representation with various metamodels[J]. Engineering Optimization, 2019, 51(8): 1336–1351. doi: 10.1080/0305215X.2018.1521398
    [13]
    FU C B, WANG P, ZHAO L, et al. A distance correlation-based Kriging modeling method for high-dimensional problems[J]. Knowledge-Based Systems, 2020, 206: 106356. doi: 10.1016/j.knosys.2020.106356
    [14]
    MOHAMMAD ZADEH P, MEHMANI A, MESSAC A. High fidelity multidisciplinary design optimization of a wing using the interaction of low and high fidelity models[J]. Optimization and Engineering, 2016, 17(3): 503–532. doi: 10.1007/s11081-015-9284-z
    [15]
    DONG H C, SONG B W, WANG P, et al. Multi-fidelity information fusion based on prediction of Kriging[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1267–1280. doi: 10.1007/s00158-014-1213-9
    [16]
    李学斌, 甘霖. AUV总体概念设计中的多学科和多目标优化研究[J]. 海洋技术, 2008, 27(2): 77–82. doi: 10.3969/j.issn.1003-2029.2008.02.018

    LI X B, GAN L. Study on multi-disciplinary design and multi-objective problem in conceptual design of AUV[J]. Ocean Technology, 2008, 27(2): 77–82 (in Chinese). doi: 10.3969/j.issn.1003-2029.2008.02.018
    [17]
    王建. 多学科优化设计在水下无人航行器设计中的应用研究[D]. 哈尔滨: 哈尔滨工程大学.

    WANG J. Application of multi-discipline design optimization method for design of unmanned underwater vhicles[D]. Harbin: Harbin Engineering University (in Chinese).
    [18]
    LUO W L, LYU W. An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots[J]. Ocean Engineering, 2015, 104: 686–697. doi: 10.1016/j.oceaneng.2015.06.011
    [19]
    ZHANG X H, LI Z, WANG P, et al. Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure[J]. Ocean Engineering, 2022, 249: 110871. doi: 10.1016/j.oceaneng.2022.110871
    [20]
    WEI R F, SHEN K C, PAN G. Optimal design of trapezoid stiffeners of composite cylindrical shells subjected to hydrostatic pressure[J]. Thin-Walled Structures, 2021, 166: 108002. doi: 10.1016/j.tws.2021.108002
    [21]
    RAHIMI G H, ZANDI M, RASOULI S F. Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading[J]. Aerospace Science and Technology, 2013, 24(1): 198–203. doi: 10.1016/j.ast.2011.11.007
    [22]
    何衍儒, 宋保维, 曹永辉. 翼身融合自主式水下航行器的多泡结构耐压舱分步优化设计[J]. 西北工业大学学报, 2018, 36(4): 664–670. doi: 10.3969/j.issn.1000-2758.2018.04.009

    HE Y R, SONG B W, CAO Y H. Multi-step structural optimization design of multi-bubble pressure cabin in the autonomous underwater vehicle with blended-wing-body[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 664–670 (in Chinese). doi: 10.3969/j.issn.1000-2758.2018.04.009
    [23]
    伍莉, 孟凡明, 陈小宁, 等. 藕节形大深度潜水器耐压壳体优化设计[J]. 船舶力学, 2008, 12(1): 100–109. doi: 10.3969/j.issn.1007-7294.2008.01.015

    WU L, MENG F M, CHEN X N, et al. Optimum design of multiple intersecting spheres great deep-submerged pressure hull[J]. Journal of Ship Mechanics, 2008, 12(1): 100–109 (in Chinese). doi: 10.3969/j.issn.1007-7294.2008.01.015
    [24]
    宋保维, 成鹏飞, 曹永辉, 等. 藕节形耐压壳体强度与稳定性有限元分析[J]. 计算机仿真, 2013, 30(2): 38–41, 246. doi: 10.3969/j.issn.1006-9348.2013.02.010

    SONG B W, CHENG P F, CAO Y H, et al. Strength and stability study of multiple intersecting spheres for pressure hull[J]. Computer Simulation, 2013, 30(2): 38–41, 246 (in Chinese). doi: 10.3969/j.issn.1006-9348.2013.02.010
    [25]
    李星升, 关静岩. 泵喷推进器在某水下航行器降噪方面的应用[J]. 数字海洋与水下攻防, 2018, 1(2): 51–56.

    LI X S, GUAN J Y. Application of pump-jet propulsor in noise reduction of underwater vehicle[J]. Digital Ocean & Underwater Warfare, 2018, 1(2): 51–56 (in Chinese).
    [26]
    方尔正, 周子凌, 桂晨阳. 水下滑翔机原理与应用[J]. 国防科技工业, 2020(8): 66–68.

    FANG E Z, ZHOU Z L, GUI C Y. The principle and application of underwater glider[J]. Defence Science & Technology Industry, 2020(8): 66–68 (in Chinese).
    [27]
    邢城, 潘光, 黄桥高. 仿蝠鲼柔性潜水器翼型流场性能分析[J]. 数字海洋与水下攻防, 2020, 3(3): 265–270. doi: 10.19838/j.issn.2096-5753.2020.03.015

    XING C, PAN G, HUANG Q G. Performance analysis of airfoil flow field of a mannequin-like flexible submersible[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 265–270 (in Chinese). doi: 10.19838/j.issn.2096-5753.2020.03.015
    [28]
    胡小平. 导航技术基础[M]. 北京: 国防工业出版社, 2015: 123-124.

    HU X P. Basics of navigation technology[M]. Beijing: National Defense Industry Press, 2015: 123-124 (in Chinese).
    [29]
    周玲. 自主水下潜器海底地形辅助导航技术研究[D]. 南京: 东南大学, 2018.

    ZHOU L. On seabed terrain aided navigation technology for autonomous underwater vehicles[D]. Nanjing: Southeast University, 2018 (in Chinese).
    [30]
    彭富清, 霍立业. 海洋地球物理导航[J]. 地球物理学进展, 2007, 22(3): 759–764. doi: 10.3969/j.issn.1004-2903.2007.03.015

    PENG F Q, HUO L Y. Marine geophysical navigation[J]. Progress in Geophysics, 2007, 22(3): 759–764 (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.03.015
    [31]
    黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232–253. doi: 10.11993/j.issn.2096-3920.2019.03.002

    HUANG Y L, ZHANG Y G, ZHAO Y X. Review of autonomous undersea vehicle navigation methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232–253 (in Chinese). doi: 10.11993/j.issn.2096-3920.2019.03.002
    [32]
    王博, 周明龙. 水下重力辅助导航适配区选取的研究进展[J]. 导航定位学报, 2020, 8(3): 32–39. doi: 10.3969/j.issn.2095-4999.2020.03.005

    WANG B, ZHOU M L. Perspective on matching area selection technology for underwater gravity aided navigation[J]. Journal of Navigation and Positioning, 2020, 8(3): 32–39 (in Chinese). doi: 10.3969/j.issn.2095-4999.2020.03.005
    [33]
    刘莉娜, 刘任庆. 基于捷联惯性导航的组合导航系统研究[J]. 现代电子技术, 2009, 32(3): 111–113. doi: 10.3969/j.issn.1004-373X.2009.03.035

    LIU L N, LIU R Q. Research of integrated navigation system based on strapdown inertial navigation system[J]. Modern Electronics Technique, 2009, 32(3): 111–113 (in Chinese). doi: 10.3969/j.issn.1004-373X.2009.03.035
    [34]
    CHANG L B, HU B Q. Robust initial attitude alignment for SINS/DVL[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 2016–2021. doi: 10.1109/TMECH.2018.2834917
    [35]
    BATISTA P, SILVESTRE C, OLIVEIRA P. GES integrated LBL/USBL navigation system for underwater vehicles[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Maui, HI, USA: IEEE, 2012: 6609–6614.
    [36]
    ZHANG L C, LI Y C, LIU L, et al. Cooperative navigation based on cross entropy: dual leaders[J]. IEEE Access, 2019, 7: 151378–151388. doi: 10.1109/ACCESS.2019.2947541
    [37]
    MENSING C, NIELSEN J J. Centralized cooperative positioning and tracking with realistic communications constraints[C]//2010 7th Workshop on Positioning, Navigation and Communication. Dresden, Germany: IEEE, 2010: 215–223.
    [38]
    GOEL S. A distributed cooperative UAV swarm localization system: development and analysis[C]//Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation. Portland, Oregon, 2017: 2501–2518.
    [39]
    张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289–297. doi: 10.11990/jheu.201909039

    ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289–297 (in Chinese). doi: 10.11990/jheu.201909039
    [40]
    CUI R X, GE S S, VOON EE HOW B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17–18): 1491–1502. doi: 10.1016/j.oceaneng.2010.07.006
    [41]
    潘无为. 分布式多水下机器人编队控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    PAN W W. Study on distributed formation control of multiple autonomous underwater vehicles[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
    [42]
    FIORELLI E, LEONARD N E, BHATTA P, et al. Multi-AUV control and adaptive sampling in Monterey Bay[J]. IEEE Journal of Oceanic Engineering, 2006, 31(4): 935–948. doi: 10.1109/JOE.2006.880429
    [43]
    YAN Z P, LIU Y B, ZHOU J J, et al. Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays[J]. Chinese Physics B, 2017, 26(4): 040203. doi: 10.1088/1674-1056/26/4/040203
    [44]
    GAO Z Y, GUO G. Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications[J]. IEEE Access, 2018, 6: 27902–27911. doi: 10.1109/ACCESS.2018.2838121
  • Related Articles

    [1]WANG Ning, LI Zhiqiang. PSO-based speed and power allocation strategy collaborative optimization method for hydrogen fuel cell ships[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03726
    [2]TU Xiaofei, LIU Jiayi, XU Wenjun, ZHANG Xiaolong, ZHONG Jinshan. Research on dynamic matching between requirements and functional models for unmanned maritime swarm collaborative operation based on improved genetic algorithm[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04202
    [3]LI Bowen, LI Jingjing, ZHANG Longjian, ZHAO Wei, ZHAN Zihao, XU Weiyang, YU Minghui. Research on optimal selection strategy of surface-to-air anti-missile kill chain based on mixed swarm evolutionary meta-game[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04217
    [4]JIAO Yuhang, WANG Ning. Finite-time trajectory tracking control of underactuated surface vehicles swarm[J]. Chinese Journal of Ship Research, 2023, 18(6): 76-87. DOI: 10.19693/j.issn.1673-3185.02958
    [5]YAN Bingcheng, CAO Le. Obstacle avoidance of unmanned ship swarm based on virtual navigator and improved Hooke's law[J]. Chinese Journal of Ship Research, 2023, 18(1): 78-88. DOI: 10.19693/j.issn.1673-3185.02372
    [6]FENG Wei, CUI Donghua, XIA Tianbing, YAN Zhaokun, WANG Hongdong. Analysis of characteristics of foreign unmanned surface vehicle swarm combat application and proposed countermeasures[J]. Chinese Journal of Ship Research, 2023, 18(1): 1-12. DOI: 10.19693/j.issn.1673-3185.02890
    [7]HOU Yueqi, LIANG Xiaolong, ZHANG Nuo, TAO Hao, GONG Junbin. Distributed formation control for swarms of unmanned marine vehicle with directed interaction topology[J]. Chinese Journal of Ship Research, 2021, 16(6): 1-9, 33. DOI: 10.19693/j.issn.1673-3185.02092
    [8]HOU Yueqi, TAO Hao, GONG Junbin, LIANG Xiaolong, ZHANG Nuo. Cooperative path planning of USV and UAV swarms under multiple constraints[J]. Chinese Journal of Ship Research, 2021, 16(1): 74-82. DOI: 10.19693/j.issn.1673-3185.02091
    [9]PENG Zhouhua, WU Wentao, WANG Dan, LIU Lu. Coordinated control of multiple unmanned surface vehicles: recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51-64, 82. DOI: 10.19693/j.issn.1673-3185.01923
    [10]XIE Wei, TAO Hao, GONG Junbin, LUO Wei, YIN Fengchuan, LIANG Xiaolong. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7-17, 31. DOI: 10.19693/j.issn.1673-3185.02225
  • Cited by

    Periodical cited type(47)

    1. 彭浩,李维波,黄康政,高俊卓. 基于BWO-SVM的AUV推进系统液压故障诊断. 机床与液压. 2025(03): 199-203 .
    2. 许朝龙,解志斌,宋科宁. 基于轻量化网络的水下目标检测算法. 无线电工程. 2025(02): 264-270 .
    3. 张继文,徐博,王储岩,王朝阳. 基于神经动力学模型预测的多AUV编队自适应控制方案. 中国舰船研究. 2025(01): 326-339 . 本站查看
    4. 王一,汪旋,王检耀,李相衡. AUV近水面波浪跟随控制及环境参数分析. 中国舰船研究. 2025(01): 340-349 . 本站查看
    5. 熊露,李京书,饶喆,霍治帆. 水下航行器地形高程匹配算法研究综述. 水下无人系统学报. 2025(01): 1-14 .
    6. 余敏,刘浩煜,张文凯,汤奇荣. 自主水下航行器群探测行为关键技术分析. 舰船科学技术. 2025(03): 111-116 .
    7. 张犇,朱亚平,路勇. 基于环型线圈互感计算的WPT系统设计研究. 电力电子技术. 2024(01): 60-63 .
    8. 陈露,赵德鑫,王俊,高虹,陈迎亮. 基于通信载荷声纹特征的身份认证方法. 水下无人系统学报. 2024(01): 97-104 .
    9. 张严,朱伟良,程菲. 无人潜航器解算目标运动要素的一种方法. 现代电子技术. 2024(09): 173-176 .
    10. 齐嘉慧,崔培,姜楷娜,吕俊军. 一种UUV集群抵近目标侦测决策效率评估方法研究. 数字海洋与水下攻防. 2024(02): 231-235 .
    11. 邱志明,孟祥尧,马焱,王亮,肖玉杰. 海上无人系统跨域协同运用与技术发展. 水下无人系统学报. 2024(02): 184-193 .
    12. 于洋,孙思卿,张立川,潘光,王鹏. 自主水下航行器集群组网技术发展与展望. 水下无人系统学报. 2024(02): 194-207 .
    13. 付少波,关夏威,张昊. 基于自抗扰理论的欠驱动AUV无模型自适应路径跟踪控制. 水下无人系统学报. 2024(02): 328-336+375 .
    14. 吴昌脉,景易凡,王斌,阮华. 水下无人航行器多目标优化设计研究进展. 舰船科学技术. 2024(10): 9-15 .
    15. 石文会,金丽娜,马楠楠. 基于MPC的AUV轨迹跟踪控制研究. 现代信息科技. 2024(10): 188-193 .
    16. 王浩亮,任恩帅,卢丽宇,刘陆,古楠,彭周华. 面向海底管道巡检的AUV三维自适应路径跟踪. 船舶工程. 2024(04): 166-174 .
    17. 董鹏,汪超. 国外军用UUV发展现状与趋势. 机电设备. 2024(03): 31-36 .
    18. 赵高阳,刘勇,朱平杰,向冰,周洪娟. 基于有限元法的水下航行器地磁异常模拟研究. 系统工程与电子技术. 2024(07): 2191-2200 .
    19. 刘肖佐,王鹏,何瑞轩,李靖璐,董华超,温志文. 基于知识挖掘的HDMR优化方法与工程应用. 机械工程学报. 2024(13): 122-129 .
    20. 周楠,魏佳广,谢维维,冯晓伟. 海管监测ARV总体设计与试验. 数字海洋与水下攻防. 2024(04): 389-396 .
    21. 刘新宇,赵俊涛,佘莹莹,张英浩. IACO-GA-IPSO融合算法AUV三维全局路径规划. 舰船科学技术. 2024(18): 99-105 .
    22. 张志伟,方泽江,何润民,赵琪,朱兆彤. 美军水下特种作战装备的发展现状及趋势分析. 水下无人系统学报. 2024(05): 962-970 .
    23. 王旭,李金明,毛昭勇,丁文俊. 基于组合赋权TOPSIS的智能UUV目标识别与反对抗效能评估. 水下无人系统学报. 2024(05): 779-786 .
    24. 张翔鸢,花吉. 国外超大型无人潜航器发展与运用研究. 中国舰船研究. 2024(05): 17-27 . 本站查看
    25. 赵大刚,张顺,高适,钟祥海. 海流对水下航行器运动及载荷影响研究综述. 中国舰船研究. 2024(05): 1-16 . 本站查看
    26. 管志光,吴昊,王学林,林明星. 基于模糊PID的小型水下机器人运动控制研究. 火力与指挥控制. 2024(10): 111-117 .
    27. 高裕浩,何腾武,赵敏. 基于OpenMDAO的BLISS-2000多学科设计优化:流程、策略与参数研究. 中国舰船研究. 2024(06): 135-149 . 本站查看
    28. 王兆杰,茆明,熊进辉,彭涛,李东鑫,孙牧,刘浩. 美军有人/无人协同反潜体系及杀伤链发展分析. 舰船科学技术. 2024(23): 184-189 .
    29. 赵卓,穆原子,周宁,杨俊飞. 基于船载无人机的海洋广域通信系统设计. 海洋技术学报. 2024(06): 12-19 .
    30. 李红,刘恒宇. 基于磁梯度方向的AUV地磁感知导航定向算法. 西安邮电大学学报. 2024(06): 27-33 .
    31. 武帅,张璨,李季,蔡春伟. 基于动态行波磁场的水下自主航行器无线电能传输系统. 导航与控制. 2024(Z1): 69-77 .
    32. 邱志明,马焱,孟祥尧,陈建华,冯炜. 水下无人装备前沿发展趋势与关键技术分析. 水下无人系统学报. 2023(01): 1-9 .
    33. 邱志明,孟祥尧,马焱,陈轶,冯炜. 海上无人系统发展及关键技术研究. 中国工程科学. 2023(03): 74-83 .
    34. 潘荣军,张伟. 基于机器学习的自主航行技术研究:探索人工智能在航海领域的应用. 中国水运(下半月). 2023(07): 46-49 .
    35. 金志刚,尹欢,洪叶,苏毅珊. 面向海洋监测的海空地协同边缘架构与拓扑控制. 西安交通大学学报. 2023(06): 47-55 .
    36. 王立志,石瑶,刘凯茜. 自主水下航行器技术发展与标准化需求. 船舶标准化与质量. 2023(01): 20-25 .
    37. 张亚军. 大型AUV及其水面侦察技术浅析. 数字海洋与水下攻防. 2023(04): 406-412 .
    38. 包艺,张庆辉,刘勇锋,李广华,张淼,陈效鹏,杜鹏. 水下仿生流场探测技术研究进展. 数字海洋与水下攻防. 2023(04): 458-471 .
    39. 李阁阁,贾世鲲,赵海侗,兰世泉,孙通帅,杨绍琼. 基于UUV的目标非声探测技术发展及趋势分析. 水下无人系统学报. 2023(04): 510-520 .
    40. 张宇新,李鹏,魏博,秦洪德. 水下航行器阻力计算及结构设计. 应用科技. 2023(05): 141-148 .
    41. 张怀亮. 水下能源供给平台电能供给技术发展现状及趋势. 船电技术. 2023(12): 15-19 .
    42. 童峰,周跃海,陈东升,李姜辉,张小康. 异构无人潜水器水声通信技术发展综述. 哈尔滨工程大学学报. 2023(11): 1963-1976 .
    43. 翟理,汪洋,胡利民,刘国海,刘亚兵,马恩林. 水下大功率高速电机SiC MOSFET逆变器设计及对比. 水下无人系统学报. 2023(06): 966-975 .
    44. 傅晓晗,付学志,王敏庆. 水下运载器声学性能预估. 水下无人系统学报. 2023(06): 871-877 .
    45. 李玉凯,吴影生,胡欲立. 新型Halbach阵列永磁屏蔽电机设计与优化研究. 微电机. 2023(12): 1-8 .
    46. 周道先,张吟龙,徐高飞,杨雨沱,梁炜. 基于形变卷积和深层聚合网络的水下文物检测. 仪器仪表学报. 2023(11): 185-195 .
    47. 潘荣军,张伟. 基于机器学习的自主航行技术研究:探索人工智能在航海领域的应用. 中国水运. 2023(14): 46-49 .

    Other cited types(67)

Catalog

    Article views (3794) PDF downloads (1598) Cited by(114)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return