Citation: | ZHU Y F, XIONG Z G, YUAN Y, et al. Thoughts on development of modern ship technology[J]. Chinese Journal of Ship Research, 2022, 17(5): 1–8. DOI: 10.19693/j.issn.1673-3185.02928 |
[1] |
单永志, 黄得刚. 美军分布式作战概念发展的启示与建议[J]. 飞航导弹, 2020(11): 68–71. doi: 10.16338/j.issn.1009-1319.20200070
SHAN Y Z, HUANG D G. Enlightenment and suggestions on the development of distributed combat concept in the US Army[J]. Aerodynamic Missile Journal, 2020(11): 68–71 (in Chinese). doi: 10.16338/j.issn.1009-1319.20200070
|
[2] |
姜志杰, 张拥军, 吴建刚, 等. 美国海军分布式杀伤作战概念发展与启示[J]. 飞航导弹, 2020(1): 83–85,96. doi: 10.16338/j.issn.1009-1319.20190183
JIANG Z J, ZHANG Y J, WU J G, et al. The development and enlightenment of the concept of distributed killing operation in the U. S. Navy[J]. Aerodynamic Missile Journal, 2020(1): 83–85,96 (in Chinese). doi: 10.16338/j.issn.1009-1319.20190183
|
[3] |
周玺, 徐庆, 何肇雄. 未来海空分布式作战构想与力量运用初探[J]. 中国电子科学研究院学报, 2020, 15(9): 856–860. doi: 10.3969/j.issn.1673-5692.2020.09.007
ZHOU X, XU Q, HE Z X. A preliminary study of operational idea and power using about the future distributed sea air combat[J]. Journal of CAEIT, 2020, 15(9): 856–860 (in Chinese). doi: 10.3969/j.issn.1673-5692.2020.09.007
|
[4] |
赵新路, 韩志强, 李兵, 等. 美军分布式作战体系及实战化运用发展分析[J]. 中国电子科学研究院学报, 2022, 17(2): 149–154. doi: 10.3969/j.issn.1673-5692.2022.02.008
ZHAO X L, HAN Z Q, LI B, et al. Analysis of the U. S. military's distributed combat system and actual combat application development[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(2): 149–154 (in Chinese). doi: 10.3969/j.issn.1673-5692.2022.02.008
|
[5] |
PERKINS D G. Multi-domain battle: the advent of twenty-first century war[J]. Military Review, 2017, 97(6): 8–13.
|
[6] |
BROWN R B, PERKINS D G. Multi-domain battle: tonight, tomorrow, and the future fight[EB/OL]. (2017-08-18)[2018-07-10]. https://warontherocks.com/2017/08/multi-domain-battle-tonight-tomorrow-and-the-future-fight.
|
[7] |
郭行, 符文星, 闫杰. 浅析美军马赛克战作战概念及启示[J]. 无人系统技术, 2020, 3(6): 92–106.
GUO X, FU W X, YAN J. Analysis and inspiration of the U. S. force's concept of mosaic warfare[J]. Unmanned Systems Technology, 2020, 3(6): 92–106 (in Chinese).
|
[8] |
李磊, 蒋琪, 王彤. 美国马赛克战分析[J]. 战术导弹技术, 2019(6): 108–114. doi: 10.16358/j.issn.1009-1300.2019.9.801
LI L, JIANG Q, WANG T. Analysis of mosaic warfare in the united states[J]. Tactical Missile Technology, 2019(6): 108–114 (in Chinese). doi: 10.16358/j.issn.1009-1300.2019.9.801
|
[9] |
潘琦, 马志强. 马赛克战研究发展综述[J]. 中国电子科学研究院学报, 2021, 16(7): 728–736. doi: 10.3969/j.issn.1673-5692.2021.07.015
PAN Q, MA Z Q. Research and development of mosaic warfare[J]. Journal of CAEIT, 2021, 16(7): 728–736 (in Chinese). doi: 10.3969/j.issn.1673-5692.2021.07.015
|
[10] |
CLARK B, PATT D, SCHRAMM H. Mosaic warfare: exploiting artificial intelligence and autonomous systems to implement decision-centric operations[R]. Washington: Center for Strategic and Budgetary Assessments, 2020.
|
[11] |
杨光, 卢发兴, 许俊飞, 等. 马赛克战对海军体系作战关键技术发展的启示[J]. 中国电子科学研究院学报, 2022, 17(1): 19–25. doi: 10.3969/j.issn.1673-5692.2022.01.004
YANG G, LU F X, XU J F, et al. Implications from mosaic warfare to the development of PLA Navy system-of-systems combat key technologies[J]. Journal of CAEIT, 2022, 17(1): 19–25 (in Chinese). doi: 10.3969/j.issn.1673-5692.2022.01.004
|
[12] |
SAPATY P S. Mosaic warfare: from philosophy to model to solutions[J]. International Robotics & Automation Journal, 2019, 5(5): 157–166.
|
[13] |
张元涛, 王巍, 赵晓宏. 马赛克战——美军未来作战新构想[J]. 军事文摘, 2020(9): 25–28.
ZHANG Y T, WANG W, ZHAO X H. Mosaic war: a new vision of future US military operations[J]. Military Digest, 2020(9): 25–28 (in Chinese).
|
[14] |
CLARK B, WALTON T A. Taking back the seas: transforming the U. S. surface fleet for decision-centric warfare[EB/OL]. (2019-12-31)[2022-5-22]. https://csbaonline.org/research/publications/taking-back-the-seas-transforming-the-u.s-surface-fleet-for-decision-centric-warfare.
|
[15] |
CLARK B, PATT D, SCHRAMM H. Decision maneuver: the next revolution in military affairs[EB/OL]. (2019-04-29) [2022-5-22]. https://othjournal.com/2019/04/29/decision-maneuver-the-next-revolution-in-military-affairs/.
|
[16] |
李磊, 韩洪伟, 蒋琪. 美决策中心战概念研究[J]. 战术导弹技术, 2021(1): 34–37,120. doi: 10.16358/j.issn.1009-1300.2021.1.508
LI L, HAN H W, JIANG Q. Analysis of the concept of U. S. decision-centric warfare[J]. Tactical Missile Technology, 2021(1): 34–37,120 (in Chinese). doi: 10.16358/j.issn.1009-1300.2021.1.508
|
[17] |
武思军. 防御体系中的“决策中心战”[J]. 指挥与控制学报, 2020, 6(3): 289–293. doi: 10.3969/j.issn.2096-0204.2020.03.0289
WU S J. Decision-centric warfare for defense system[J]. Journal of Command and Control, 2020, 6(3): 289–293 (in Chinese). doi: 10.3969/j.issn.2096-0204.2020.03.0289
|
[18] |
槐泽鹏, 龚旻, 陈克. 未来战争形态发展研究[J]. 战术导弹技术, 2018(1): 1–9,29. doi: 10.16358/j.issn.1009-1300.2018.01.01
HUAI Z P, GONG M, CHEN K. Study of future war form development[J]. Tactical Missile Technology, 2018(1): 1–9,29 (in Chinese). doi: 10.16358/j.issn.1009-1300.2018.01.01
|
[19] |
王虎. 未来海战场作战形态研究[J]. 电子工程信息, 2019(3): 1–9.
WANG H. Research on combat form of future sea battlefield[J]. Electronic Engineering Information, 2019(3): 1–9 (in Chinese).
|
[20] |
常壮, 冯书兴, 孙健, 等. 美军电磁频谱战发展沿革与现状述评[J]. 航天电子对抗, 2018, 34(1): 54–59. doi: 10.16328/j.htdz8511.2018.01.013
CHANG Z, FENG S X, SUN J, et al. Commentary on developing evolution and status-quo of U. S. armed forces' joint electromagnetic spectrum operations[J]. Aerospace Electronic Warfare, 2018, 34(1): 54–59 (in Chinese). doi: 10.16328/j.htdz8511.2018.01.013
|
[21] |
CLARK B, GUNZINGER M. Winning the airwaves: regaining America's dominance in the electromagnetic spectrum[R]. Washington: Center for Strategic and Budgetary Assessments (CSBA), 2015.
|
[22] |
CLARK B, GUNZINGER M, SLOMAN J. Winning in the gray zone: using electromagnetic warfare to regain escalation dominance[R]. Washington: Center for Strategic and Budgetary Assessments, 2017.
|
[23] |
李硕, 李祯静, 朱松, 等. 美军电磁频谱战发展分析及启示[J]. 中国电子科学研究院学报, 2020, 15(8): 721–724. doi: 10.3969/j.issn.1673-5692.2020.08.004
LI S, LI Z J, ZHU S, et al. Development analysis and enlightenment of US Army's electromagnetic spectrum warfare[J]. Journal of CAEIT, 2020, 15(8): 721–724 (in Chinese). doi: 10.3969/j.issn.1673-5692.2020.08.004
|
[24] |
CHIN C. Preparing cyberspace forces for warfare in the information age[EB/OL]. (2019-1-31)[2022-7-25]. https://othjournal.com/2019/01/31/preparing-cyberspace-forces-for-warfare-in -the-information-age/.
|
[25] |
易亮, 陆杨. 美国海军“分布式杀伤”概念的装备技术支撑[J]. 海军工程大学学报(综合版), 2018, 15(2): 36–40. doi: 10.13678/j.cnki.issn1674-5531.2018.02.008
YI L, LU Y. United States navy equipment technology for "Distributed Lethality" concept[J]. Journal of Naval University of Engineering, 2018, 15(2): 36–40 (in Chinese). doi: 10.13678/j.cnki.issn1674-5531.2018.02.008
|
[26] |
王宇, 郭兴旺. 无人系统集群海上作战应用研究[J]. 舰船电子工程, 2019, 39(12): 21–25.
WANG Y, GUO X W. Research on the application of unmanned system cluster in marine combat applications[J]. Ship Electronic Engineering, 2019, 39(12): 21–25 (in Chinese).
|
[27] |
杨亚丽, 贾欢欢, 薛晓东. 美国无人系统未来发展路线[J]. 飞航导弹, 2015(5): 18–24. doi: 10.16338/j.issn.1009-1319.2015.05.05
YANG Y L, JIA H H, XUE X D. Future development route of American unmanned system[J]. Aerodynamic Missile Journal, 2015(5): 18–24 (in Chinese). doi: 10.16338/j.issn.1009-1319.2015.05.05
|
[28] |
谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7–17,31. doi: 10.19693/j.issn.1673-3185.02225
XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7–17,31 (in Chinese). doi: 10.19693/j.issn.1673-3185.02225
|
[29] |
何奇毅, 宗思光. 舰载激光武器发展进展与思考[J]. 激光与红外, 2017, 47(12): 1455–1460. doi: 10.3969/j.issn.1001-5078.2017.12.001
HE Q Y, ZONG S G. Research progress and consideration of shipborne laser weapon[J]. Laser & Infrared, 2017, 47(12): 1455–1460 (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.12.001
|
[30] |
王海涛. 激光武器关键技术及典型作战模式分析[J]. 航空兵器, 2020, 27(2): 25–31. doi: 10.12132/ISSN.1673-5048.2019.0260
WANG H T. Analysis on the key technologies and typical battle mode of laser weapon[J]. Aero Weaponry, 2020, 27(2): 25–31 (in Chinese). doi: 10.12132/ISSN.1673-5048.2019.0260
|
[31] |
陈凯柏, 周晓东, 高敏. 高功率微波技术研究进展及应用[J]. 飞航导弹, 2019(6): 1–6. doi: 10.16338/j.issn.1009-1319.20180350
CHEN K B, ZHOU X D, GAO M. Research progress and application of high power microwave technology[J]. Aerodynamic Missile Journal, 2019(6): 1–6 (in Chinese). doi: 10.16338/j.issn.1009-1319.20180350
|
[32] |
祝民鹏, 侯德亭, 陈丹. 国外高功率微波技术发展及应用[J]. 飞航导弹, 2018(2): 67–71. doi: 10.16338/j.issn.1009-1319.2018.02.14
ZHU M P, HOU D T, CHEN D. Development and application of high power microwave technology abroad[J]. Aerodynamic Missile Journal, 2018(2): 67–71 (in Chinese). doi: 10.16338/j.issn.1009-1319.2018.02.14
|
[33] |
WALKER S, SHERK J, SHELL D, et al. The DARPA/AF Falcon program: the hypersonic technology vehicle #2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio: AIAA, 2008.
|
[34] |
姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7): 19–24.
JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicles abroad[J]. Aerodynamic Missile Journal, 2017(7): 19–24 (in Chinese).
|
[35] |
赵鹏飞, 董长虹. 高超声速飞行器关键技术发展分析[J]. 飞航导弹, 2017(10): 37–44. doi: 10.16338/j.issn.1009-1319.2017.10.08
ZHAO P F, DONG C H. Analysis of key technology development of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2017(10): 37–44 (in Chinese). doi: 10.16338/j.issn.1009-1319.2017.10.08
|
[36] |
黄志澄. 高超声速武器及其对未来战争的影响[J]. 战术导弹技术, 2018(3): 1–7. doi: 10.16358/j.issn.1009-1300.2018.8.501
HUANG Z C. Hypersonic weapons and its influence on future war[J]. Tactical Missile Technology, 2018(3): 1–7 (in Chinese). doi: 10.16358/j.issn.1009-1300.2018.8.501
|
[37] |
刘敏华, 俞启东, 陈升泽, 等. 关于未来导弹战形态及创新设计的研究[J]. 导弹与航天运载技术, 2018(1): 1–6. doi: 10.7654/j.issn.1004-7182.20180101
LIU M H, YU Q D, CHEN S Z, et al. Study on future war morphology and warfare innovative design[J]. Missiles and Space Vehicles, 2018(1): 1–6 (in Chinese). doi: 10.7654/j.issn.1004-7182.20180101
|
[38] |
郭栋, 张迎新, 曹强, 等. 美海军分布式防空作战能力仿真分析[J]. 指挥控制与仿真, 2020, 42(6): 107–111. doi: 10.3969/j.issn.1673-3819.2020.06.019
GUO D, ZHANG Y X, CAO Q, et al. Simulation analysis on distributed air defense operation capability of united states navy[J]. Command Control & Simulation, 2020, 42(6): 107–111 (in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.019
|
[39] |
董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020.
DONG X M. Introduction to maritime unmanned systems[M]. Harbin: Harbin Engineering University Press, 2020 (in Chinese).
|
[40] |
刘大庆, 赵志允, 李长军. 海军无人作战力量作战能力构成研究[J]. 指挥控制与仿真, 2020, 42(6): 9–13. doi: 10.3969/j.issn.1673-3819.2020.06.002
LIU D Q, ZHAO Z Y, LI C J. Research on combat capability composition of navy unmanned combat power[J]. Command Control & Simulation, 2020, 42(6): 9–13 (in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.002
|
[41] |
邱千钧, 范英飚, 陈海建, 等. 美海军舰艇编队协同作战能力CEC系统研究综述[J]. 现代导航, 2017, 8(6): 457–462.
QIU Q J, FAN Y B, CHEN H J, et al. Reviews on cooperative engagement capability system of US navy warship formation[J]. Modern Navigation, 2017, 8(6): 457–462 (in Chinese).
|
[42] |
刘维国, 刘晓明, 王一琳, 等. 美国“海军一体化防空火控系统”发展研究[J]. 战术导弹技术, 2017(2): 21–25, 57. doi: 10.16358/j.issn.1009-1300.2017.02.04
LIU W G, LIU X M, WANG Y L, et al. Analysis on the development of American naval integrated fire control-counter air system[J]. Tactical Missile Technology, 2017(2): 21–25, 57 (in Chinese). doi: 10.16358/j.issn.1009-1300.2017.02.04
|
[43] |
刁端信, 陈豪. 国外海军集成桅杆技术发展浅析[J]. 船舶, 2015(3): 97–102. doi: 10.3969/j.issn.1001-9855.2015.03.017
DIAO D X, CHEN H. Integrated mast technology of foreign navies[J]. Ship & Boat, 2015(3): 97–102 (in Chinese). doi: 10.3969/j.issn.1001-9855.2015.03.017
|
[44] |
杨剑波, 宗思光, 陈利斐. 高功率激光武器进展与启示[J]. 激光与红外, 2021, 51(6): 695–704. doi: 10.3969/j.issn.1001-5078.2021.06.002
YANG J B, ZONG S G, CHEN L F. Developments and trends of laser weapons[J]. Laser & Infrared, 2021, 51(6): 695–704 (in Chinese). doi: 10.3969/j.issn.1001-5078.2021.06.002
|
[45] |
梁磊, 肖静, 邓扬晨. 舰载无人机着舰技术现状及发展趋势[J]. 西安航空学院学报, 2020, 38(5): 23–28. doi: 10.3969/j.issn.1008-9233.2020.05.005
LIANG L, XIAO J, DENG Y C. Research and development trend of carrier landing technology of UAV[J]. Journal of Xi’an Aeronautical University, 2020, 38(5): 23–28 (in Chinese). doi: 10.3969/j.issn.1008-9233.2020.05.005
|
[46] |
张伟, 廖煜雷, 姜峰, 等. 无人水面艇技术发展回顾与趋势分析[J]. 无人系统技术, 2019, 2(6): 1–9.
ZHANG W, LIAO Y L, JIANG F, et al. Development review and trend analysis of unmanned surface vehicles technology[J]. Unmanned Systems Technology, 2019, 2(6): 1–9 (in Chinese).
|
[47] |
彭艳, 葛磊, 李小毛, 等. 无人水面艇研究现状与发展趋势[J]. 上海大学学报(自然科学版), 2019, 25(5): 645–654.
PENG Y, GE L, LI X M, et al. Research status and development trend of unmanned surface vehicle[J]. Journal of Shanghai University (Natural Science Edition), 2019, 25(5): 645–654 (in Chinese).
|
[48] |
钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273–282. doi: 10.11993/j.issn.2096-3920.2018.04.001
ZHONG H W, LI G L, SONG L H, et al. Development of large displacement unmanned undersea vehicle in foreign countries: a review[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273–282 (in Chinese). doi: 10.11993/j.issn.2096-3920.2018.04.001
|
[49] |
张晗, 闫大海, 钱治强. 水面舰船隐身技术研究[J]. 舰船科学技术, 2020, 42(19): 140–145. doi: 10.3404/j.issn.1672-7649.2020.10.027
ZHANG H, YAN D H, QIAN Z Q. Research on surface ship stealth technology[J]. Ship Science and Technology, 2020, 42(19): 140–145 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.10.027
|
[50] |
朱炜, 郭航. 现代舰船隐身技术的若干方法研究[J]. 舰船电子工程, 2014, 34(12): 22–26.
ZHU W, GUO H. Research on the methods of warship stealthy technology[J]. Ship Electronic Engineering, 2014, 34(12): 22–26 (in Chinese).
|
[51] |
邱志明, 罗荣, 王亮, 等. 军事智能技术在海战领域应用的几点思考[J]. 空天防御, 2019, 2(1): 1–5. doi: 10.3969/j.issn.2096-4641.2019.01.001
QIU Z M, LUO R, WANG L, et al. Some thoughts on the application of military intelligence technology in naval warfare[J]. Air & Space Defense, 2019, 2(1): 1–5 (in Chinese). doi: 10.3969/j.issn.2096-4641.2019.01.001
|
[52] |
马运义. 发展绿色舰船、抢占未来舰船发展制高点[J]. 中国舰船研究, 2016, 11(1): 13–18,26. doi: 10.3969/j.issn.1673-3185.2016.01.003
MA Y Y. Developing green ships for domination in future ship development[J]. Chinese Journal of Ship Research, 2016, 11(1): 13–18,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.003
|
[53] |
CHAMBERS A M, YETIV S A. The great green fleet: the U. S. navy and fossil-fuel alternatives[J]. Naval War College Review, 2011, 64(3): 61–77.
|
[1] | ZHOU Xintao, WU Guomin, LI Decong. Analysis of naval warship blast and shock resistance technology system[J]. Chinese Journal of Ship Research, 2023, 18(2): 127-139. DOI: 10.19693/j.issn.1673-3185.02362 |
[2] | ZHU Wei, CHEN Wei, FENG Yang. 水面舰船雷达波隐身技术与总体设计[J]. Chinese Journal of Ship Research, 2015, 10(3): 1-6,56. DOI: 10.3969/j.issn.1673-3185.2015.03.001 |
[3] | Liu Weiguo, Zhao Yuanzheng, Liu Hui. 舰船氧、氮气体分离技术现状与展望[J]. Chinese Journal of Ship Research, 2012, 7(2): 102-107. DOI: 10.3969/j.issn.1673-3185.2012.02.019 |
[4] | Zhang Ping, Hong Weihon. 舰船总体区域设计技术研究[J]. Chinese Journal of Ship Research, 2009, 4(3): 33-37. DOI: 10.3969/j.issn.1673-3185.2009.03.007 |
[5] | Zhang Weijun. 舰船隐身面临的挑战及技术发展展望[J]. Chinese Journal of Ship Research, 2007, 2(6): 46-49. DOI: 10.3969/j.issn.1673-3185.2007.06.009 |
[6] | Zheng Xinghai, Li Hua, Peng Yuhui. 舰船细水雾灭火技术应用研究[J]. Chinese Journal of Ship Research, 2007, 2(2): 71-74. DOI: 10.3969/j.issn.1673-3185.2007.02.017 |
[7] | Li Guanghui. 舰船安全性设计技术[J]. Chinese Journal of Ship Research, 2007, 2(2): 63-66. DOI: 10.3969/j.issn.1673-3185.2007.02.015 |
[8] | Wang Shuwen, Tang Liyi, Liu Xiufeng . 舰船恒压消防供水技术[J]. Chinese Journal of Ship Research, 2006, 1(5-6): 57-60. DOI: 10.3969/j.issn.1673-3185.2006.06.013 |
[9] | Zhong Yuxiang, Xu Shihua. 舰船装置的隐身技术[J]. Chinese Journal of Ship Research, 2006, 1(4): 76-80. DOI: 10.3969/j.issn.1673-3185.2006.04.018 |
[10] | Zheng Junlin, Chen Xingang, Zheng Chunbin, Zhao Liuping. 舰船电场隐身技术[J]. Chinese Journal of Ship Research, 2006, 1(4): 48-51. DOI: 10.3969/j.issn.1673-3185.2006.04.011 |
1. |
武俊智,王文卓,杨欣华,邓乐淳,陈强. 银包覆铁硅铬粉的制备与电磁屏蔽性能研究. 中国舰船研究. 2024(02): 173-180 .
![]() | |
2. |
王元慧,任哲达,邵兴超,王心玮. 基于非奇异快速终端滑模的多水面船固定时间协同控制. 控制与决策. 2024(08): 2637-2646 .
![]() | |
3. |
杨成斌,吴晓阳,张鲁君,刘先越. 智能无人艇关键技术需求分析研究. 科技创新与应用. 2024(28): 8-14 .
![]() | |
4. |
范润华,王宗祥,杨鹏涛,刘峣. 超材料在舰船装备领域应用研究进展. 材料开发与应用. 2024(05): 1-16 .
![]() | |
5. |
杨萌,龚俊斌,曹晋,周塔. 基于智能模糊推理系统的船型概念方案快速生成研究. 中国舰船研究. 2024(06): 45-55 .
![]() | |
6. |
高裕浩,何腾武,赵敏. 基于OpenMDAO的BLISS-2000多学科设计优化:流程、策略与参数研究. 中国舰船研究. 2024(06): 135-149 .
![]() | |
7. |
董赞. 某型SPMT车组重载条件下的运动性能测试. 科技资讯. 2023(24): 82-85 .
![]() |