ZHU Y F, XIONG Z G, YUAN Y, et al. Thoughts on development of modern ship technology[J]. Chinese Journal of Ship Research, 2022, 17(5): 1–8. DOI: 10.19693/j.issn.1673-3185.02928
Citation: ZHU Y F, XIONG Z G, YUAN Y, et al. Thoughts on development of modern ship technology[J]. Chinese Journal of Ship Research, 2022, 17(5): 1–8. DOI: 10.19693/j.issn.1673-3185.02928

Thoughts on development of modern ship technology

More Information
  • Received Date: May 25, 2022
  • Revised Date: August 09, 2022
  • Accepted Date: August 16, 2022
  • Available Online: August 16, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • With the continuous innovation of new maritime concepts of operations, the modern form of naval warfare presents the characteristics of multi-domain attack and defense, distributed coordination and efficient killing, accelerating the innovation and development of new surface ship technology. Focusing on combat space, combat system structure, combat units and combat armaments, this paper summarizes the main characteristics of new modern maritime concepts of operations, categorizes the system positioning and combat capability evolution of surface ships, and systematically analyzes the development of new surface ship equipment. It then puts forward several thoughts on the development of surface ship overall integration technology, network information technology, digital intelligence enabling technology, new energy security technology, advanced material technology and environmental protection and energy saving technology.
  • [1]
    单永志, 黄得刚. 美军分布式作战概念发展的启示与建议[J]. 飞航导弹, 2020(11): 68–71. doi: 10.16338/j.issn.1009-1319.20200070

    SHAN Y Z, HUANG D G. Enlightenment and suggestions on the development of distributed combat concept in the US Army[J]. Aerodynamic Missile Journal, 2020(11): 68–71 (in Chinese). doi: 10.16338/j.issn.1009-1319.20200070
    [2]
    姜志杰, 张拥军, 吴建刚, 等. 美国海军分布式杀伤作战概念发展与启示[J]. 飞航导弹, 2020(1): 83–85,96. doi: 10.16338/j.issn.1009-1319.20190183

    JIANG Z J, ZHANG Y J, WU J G, et al. The development and enlightenment of the concept of distributed killing operation in the U. S. Navy[J]. Aerodynamic Missile Journal, 2020(1): 83–85,96 (in Chinese). doi: 10.16338/j.issn.1009-1319.20190183
    [3]
    周玺, 徐庆, 何肇雄. 未来海空分布式作战构想与力量运用初探[J]. 中国电子科学研究院学报, 2020, 15(9): 856–860. doi: 10.3969/j.issn.1673-5692.2020.09.007

    ZHOU X, XU Q, HE Z X. A preliminary study of operational idea and power using about the future distributed sea air combat[J]. Journal of CAEIT, 2020, 15(9): 856–860 (in Chinese). doi: 10.3969/j.issn.1673-5692.2020.09.007
    [4]
    赵新路, 韩志强, 李兵, 等. 美军分布式作战体系及实战化运用发展分析[J]. 中国电子科学研究院学报, 2022, 17(2): 149–154. doi: 10.3969/j.issn.1673-5692.2022.02.008

    ZHAO X L, HAN Z Q, LI B, et al. Analysis of the U. S. military's distributed combat system and actual combat application development[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(2): 149–154 (in Chinese). doi: 10.3969/j.issn.1673-5692.2022.02.008
    [5]
    PERKINS D G. Multi-domain battle: the advent of twenty-first century war[J]. Military Review, 2017, 97(6): 8–13.
    [6]
    BROWN R B, PERKINS D G. Multi-domain battle: tonight, tomorrow, and the future fight[EB/OL]. (2017-08-18)[2018-07-10]. https://warontherocks.com/2017/08/multi-domain-battle-tonight-tomorrow-and-the-future-fight.
    [7]
    郭行, 符文星, 闫杰. 浅析美军马赛克战作战概念及启示[J]. 无人系统技术, 2020, 3(6): 92–106.

    GUO X, FU W X, YAN J. Analysis and inspiration of the U. S. force's concept of mosaic warfare[J]. Unmanned Systems Technology, 2020, 3(6): 92–106 (in Chinese).
    [8]
    李磊, 蒋琪, 王彤. 美国马赛克战分析[J]. 战术导弹技术, 2019(6): 108–114. doi: 10.16358/j.issn.1009-1300.2019.9.801

    LI L, JIANG Q, WANG T. Analysis of mosaic warfare in the united states[J]. Tactical Missile Technology, 2019(6): 108–114 (in Chinese). doi: 10.16358/j.issn.1009-1300.2019.9.801
    [9]
    潘琦, 马志强. 马赛克战研究发展综述[J]. 中国电子科学研究院学报, 2021, 16(7): 728–736. doi: 10.3969/j.issn.1673-5692.2021.07.015

    PAN Q, MA Z Q. Research and development of mosaic warfare[J]. Journal of CAEIT, 2021, 16(7): 728–736 (in Chinese). doi: 10.3969/j.issn.1673-5692.2021.07.015
    [10]
    CLARK B, PATT D, SCHRAMM H. Mosaic warfare: exploiting artificial intelligence and autonomous systems to implement decision-centric operations[R]. Washington: Center for Strategic and Budgetary Assessments, 2020.
    [11]
    杨光, 卢发兴, 许俊飞, 等. 马赛克战对海军体系作战关键技术发展的启示[J]. 中国电子科学研究院学报, 2022, 17(1): 19–25. doi: 10.3969/j.issn.1673-5692.2022.01.004

    YANG G, LU F X, XU J F, et al. Implications from mosaic warfare to the development of PLA Navy system-of-systems combat key technologies[J]. Journal of CAEIT, 2022, 17(1): 19–25 (in Chinese). doi: 10.3969/j.issn.1673-5692.2022.01.004
    [12]
    SAPATY P S. Mosaic warfare: from philosophy to model to solutions[J]. International Robotics & Automation Journal, 2019, 5(5): 157–166.
    [13]
    张元涛, 王巍, 赵晓宏. 马赛克战——美军未来作战新构想[J]. 军事文摘, 2020(9): 25–28.

    ZHANG Y T, WANG W, ZHAO X H. Mosaic war: a new vision of future US military operations[J]. Military Digest, 2020(9): 25–28 (in Chinese).
    [14]
    CLARK B, WALTON T A. Taking back the seas: transforming the U. S. surface fleet for decision-centric warfare[EB/OL]. (2019-12-31)[2022-5-22]. https://csbaonline.org/research/publications/taking-back-the-seas-transforming-the-u.s-surface-fleet-for-decision-centric-warfare.
    [15]
    CLARK B, PATT D, SCHRAMM H. Decision maneuver: the next revolution in military affairs[EB/OL]. (2019-04-29) [2022-5-22]. https://othjournal.com/2019/04/29/decision-maneuver-the-next-revolution-in-military-affairs/.
    [16]
    李磊, 韩洪伟, 蒋琪. 美决策中心战概念研究[J]. 战术导弹技术, 2021(1): 34–37,120. doi: 10.16358/j.issn.1009-1300.2021.1.508

    LI L, HAN H W, JIANG Q. Analysis of the concept of U. S. decision-centric warfare[J]. Tactical Missile Technology, 2021(1): 34–37,120 (in Chinese). doi: 10.16358/j.issn.1009-1300.2021.1.508
    [17]
    武思军. 防御体系中的“决策中心战”[J]. 指挥与控制学报, 2020, 6(3): 289–293. doi: 10.3969/j.issn.2096-0204.2020.03.0289

    WU S J. Decision-centric warfare for defense system[J]. Journal of Command and Control, 2020, 6(3): 289–293 (in Chinese). doi: 10.3969/j.issn.2096-0204.2020.03.0289
    [18]
    槐泽鹏, 龚旻, 陈克. 未来战争形态发展研究[J]. 战术导弹技术, 2018(1): 1–9,29. doi: 10.16358/j.issn.1009-1300.2018.01.01

    HUAI Z P, GONG M, CHEN K. Study of future war form development[J]. Tactical Missile Technology, 2018(1): 1–9,29 (in Chinese). doi: 10.16358/j.issn.1009-1300.2018.01.01
    [19]
    王虎. 未来海战场作战形态研究[J]. 电子工程信息, 2019(3): 1–9.

    WANG H. Research on combat form of future sea battlefield[J]. Electronic Engineering Information, 2019(3): 1–9 (in Chinese).
    [20]
    常壮, 冯书兴, 孙健, 等. 美军电磁频谱战发展沿革与现状述评[J]. 航天电子对抗, 2018, 34(1): 54–59. doi: 10.16328/j.htdz8511.2018.01.013

    CHANG Z, FENG S X, SUN J, et al. Commentary on developing evolution and status-quo of U. S. armed forces' joint electromagnetic spectrum operations[J]. Aerospace Electronic Warfare, 2018, 34(1): 54–59 (in Chinese). doi: 10.16328/j.htdz8511.2018.01.013
    [21]
    CLARK B, GUNZINGER M. Winning the airwaves: regaining America's dominance in the electromagnetic spectrum[R]. Washington: Center for Strategic and Budgetary Assessments (CSBA), 2015.
    [22]
    CLARK B, GUNZINGER M, SLOMAN J. Winning in the gray zone: using electromagnetic warfare to regain escalation dominance[R]. Washington: Center for Strategic and Budgetary Assessments, 2017.
    [23]
    李硕, 李祯静, 朱松, 等. 美军电磁频谱战发展分析及启示[J]. 中国电子科学研究院学报, 2020, 15(8): 721–724. doi: 10.3969/j.issn.1673-5692.2020.08.004

    LI S, LI Z J, ZHU S, et al. Development analysis and enlightenment of US Army's electromagnetic spectrum warfare[J]. Journal of CAEIT, 2020, 15(8): 721–724 (in Chinese). doi: 10.3969/j.issn.1673-5692.2020.08.004
    [24]
    CHIN C. Preparing cyberspace forces for warfare in the information age[EB/OL]. (2019-1-31)[2022-7-25]. https://othjournal.com/2019/01/31/preparing-cyberspace-forces-for-warfare-in -the-information-age/.
    [25]
    易亮, 陆杨. 美国海军“分布式杀伤”概念的装备技术支撑[J]. 海军工程大学学报(综合版), 2018, 15(2): 36–40. doi: 10.13678/j.cnki.issn1674-5531.2018.02.008

    YI L, LU Y. United States navy equipment technology for "Distributed Lethality" concept[J]. Journal of Naval University of Engineering, 2018, 15(2): 36–40 (in Chinese). doi: 10.13678/j.cnki.issn1674-5531.2018.02.008
    [26]
    王宇, 郭兴旺. 无人系统集群海上作战应用研究[J]. 舰船电子工程, 2019, 39(12): 21–25.

    WANG Y, GUO X W. Research on the application of unmanned system cluster in marine combat applications[J]. Ship Electronic Engineering, 2019, 39(12): 21–25 (in Chinese).
    [27]
    杨亚丽, 贾欢欢, 薛晓东. 美国无人系统未来发展路线[J]. 飞航导弹, 2015(5): 18–24. doi: 10.16338/j.issn.1009-1319.2015.05.05

    YANG Y L, JIA H H, XUE X D. Future development route of American unmanned system[J]. Aerodynamic Missile Journal, 2015(5): 18–24 (in Chinese). doi: 10.16338/j.issn.1009-1319.2015.05.05
    [28]
    谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7–17,31. doi: 10.19693/j.issn.1673-3185.02225

    XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7–17,31 (in Chinese). doi: 10.19693/j.issn.1673-3185.02225
    [29]
    何奇毅, 宗思光. 舰载激光武器发展进展与思考[J]. 激光与红外, 2017, 47(12): 1455–1460. doi: 10.3969/j.issn.1001-5078.2017.12.001

    HE Q Y, ZONG S G. Research progress and consideration of shipborne laser weapon[J]. Laser & Infrared, 2017, 47(12): 1455–1460 (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.12.001
    [30]
    王海涛. 激光武器关键技术及典型作战模式分析[J]. 航空兵器, 2020, 27(2): 25–31. doi: 10.12132/ISSN.1673-5048.2019.0260

    WANG H T. Analysis on the key technologies and typical battle mode of laser weapon[J]. Aero Weaponry, 2020, 27(2): 25–31 (in Chinese). doi: 10.12132/ISSN.1673-5048.2019.0260
    [31]
    陈凯柏, 周晓东, 高敏. 高功率微波技术研究进展及应用[J]. 飞航导弹, 2019(6): 1–6. doi: 10.16338/j.issn.1009-1319.20180350

    CHEN K B, ZHOU X D, GAO M. Research progress and application of high power microwave technology[J]. Aerodynamic Missile Journal, 2019(6): 1–6 (in Chinese). doi: 10.16338/j.issn.1009-1319.20180350
    [32]
    祝民鹏, 侯德亭, 陈丹. 国外高功率微波技术发展及应用[J]. 飞航导弹, 2018(2): 67–71. doi: 10.16338/j.issn.1009-1319.2018.02.14

    ZHU M P, HOU D T, CHEN D. Development and application of high power microwave technology abroad[J]. Aerodynamic Missile Journal, 2018(2): 67–71 (in Chinese). doi: 10.16338/j.issn.1009-1319.2018.02.14
    [33]
    WALKER S, SHERK J, SHELL D, et al. The DARPA/AF Falcon program: the hypersonic technology vehicle #2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio: AIAA, 2008.
    [34]
    姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7): 19–24.

    JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicles abroad[J]. Aerodynamic Missile Journal, 2017(7): 19–24 (in Chinese).
    [35]
    赵鹏飞, 董长虹. 高超声速飞行器关键技术发展分析[J]. 飞航导弹, 2017(10): 37–44. doi: 10.16338/j.issn.1009-1319.2017.10.08

    ZHAO P F, DONG C H. Analysis of key technology development of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2017(10): 37–44 (in Chinese). doi: 10.16338/j.issn.1009-1319.2017.10.08
    [36]
    黄志澄. 高超声速武器及其对未来战争的影响[J]. 战术导弹技术, 2018(3): 1–7. doi: 10.16358/j.issn.1009-1300.2018.8.501

    HUANG Z C. Hypersonic weapons and its influence on future war[J]. Tactical Missile Technology, 2018(3): 1–7 (in Chinese). doi: 10.16358/j.issn.1009-1300.2018.8.501
    [37]
    刘敏华, 俞启东, 陈升泽, 等. 关于未来导弹战形态及创新设计的研究[J]. 导弹与航天运载技术, 2018(1): 1–6. doi: 10.7654/j.issn.1004-7182.20180101

    LIU M H, YU Q D, CHEN S Z, et al. Study on future war morphology and warfare innovative design[J]. Missiles and Space Vehicles, 2018(1): 1–6 (in Chinese). doi: 10.7654/j.issn.1004-7182.20180101
    [38]
    郭栋, 张迎新, 曹强, 等. 美海军分布式防空作战能力仿真分析[J]. 指挥控制与仿真, 2020, 42(6): 107–111. doi: 10.3969/j.issn.1673-3819.2020.06.019

    GUO D, ZHANG Y X, CAO Q, et al. Simulation analysis on distributed air defense operation capability of united states navy[J]. Command Control & Simulation, 2020, 42(6): 107–111 (in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.019
    [39]
    董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020.

    DONG X M. Introduction to maritime unmanned systems[M]. Harbin: Harbin Engineering University Press, 2020 (in Chinese).
    [40]
    刘大庆, 赵志允, 李长军. 海军无人作战力量作战能力构成研究[J]. 指挥控制与仿真, 2020, 42(6): 9–13. doi: 10.3969/j.issn.1673-3819.2020.06.002

    LIU D Q, ZHAO Z Y, LI C J. Research on combat capability composition of navy unmanned combat power[J]. Command Control & Simulation, 2020, 42(6): 9–13 (in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.002
    [41]
    邱千钧, 范英飚, 陈海建, 等. 美海军舰艇编队协同作战能力CEC系统研究综述[J]. 现代导航, 2017, 8(6): 457–462.

    QIU Q J, FAN Y B, CHEN H J, et al. Reviews on cooperative engagement capability system of US navy warship formation[J]. Modern Navigation, 2017, 8(6): 457–462 (in Chinese).
    [42]
    刘维国, 刘晓明, 王一琳, 等. 美国“海军一体化防空火控系统”发展研究[J]. 战术导弹技术, 2017(2): 21–25, 57. doi: 10.16358/j.issn.1009-1300.2017.02.04

    LIU W G, LIU X M, WANG Y L, et al. Analysis on the development of American naval integrated fire control-counter air system[J]. Tactical Missile Technology, 2017(2): 21–25, 57 (in Chinese). doi: 10.16358/j.issn.1009-1300.2017.02.04
    [43]
    刁端信, 陈豪. 国外海军集成桅杆技术发展浅析[J]. 船舶, 2015(3): 97–102. doi: 10.3969/j.issn.1001-9855.2015.03.017

    DIAO D X, CHEN H. Integrated mast technology of foreign navies[J]. Ship & Boat, 2015(3): 97–102 (in Chinese). doi: 10.3969/j.issn.1001-9855.2015.03.017
    [44]
    杨剑波, 宗思光, 陈利斐. 高功率激光武器进展与启示[J]. 激光与红外, 2021, 51(6): 695–704. doi: 10.3969/j.issn.1001-5078.2021.06.002

    YANG J B, ZONG S G, CHEN L F. Developments and trends of laser weapons[J]. Laser & Infrared, 2021, 51(6): 695–704 (in Chinese). doi: 10.3969/j.issn.1001-5078.2021.06.002
    [45]
    梁磊, 肖静, 邓扬晨. 舰载无人机着舰技术现状及发展趋势[J]. 西安航空学院学报, 2020, 38(5): 23–28. doi: 10.3969/j.issn.1008-9233.2020.05.005

    LIANG L, XIAO J, DENG Y C. Research and development trend of carrier landing technology of UAV[J]. Journal of Xi’an Aeronautical University, 2020, 38(5): 23–28 (in Chinese). doi: 10.3969/j.issn.1008-9233.2020.05.005
    [46]
    张伟, 廖煜雷, 姜峰, 等. 无人水面艇技术发展回顾与趋势分析[J]. 无人系统技术, 2019, 2(6): 1–9.

    ZHANG W, LIAO Y L, JIANG F, et al. Development review and trend analysis of unmanned surface vehicles technology[J]. Unmanned Systems Technology, 2019, 2(6): 1–9 (in Chinese).
    [47]
    彭艳, 葛磊, 李小毛, 等. 无人水面艇研究现状与发展趋势[J]. 上海大学学报(自然科学版), 2019, 25(5): 645–654.

    PENG Y, GE L, LI X M, et al. Research status and development trend of unmanned surface vehicle[J]. Journal of Shanghai University (Natural Science Edition), 2019, 25(5): 645–654 (in Chinese).
    [48]
    钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273–282. doi: 10.11993/j.issn.2096-3920.2018.04.001

    ZHONG H W, LI G L, SONG L H, et al. Development of large displacement unmanned undersea vehicle in foreign countries: a review[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273–282 (in Chinese). doi: 10.11993/j.issn.2096-3920.2018.04.001
    [49]
    张晗, 闫大海, 钱治强. 水面舰船隐身技术研究[J]. 舰船科学技术, 2020, 42(19): 140–145. doi: 10.3404/j.issn.1672-7649.2020.10.027

    ZHANG H, YAN D H, QIAN Z Q. Research on surface ship stealth technology[J]. Ship Science and Technology, 2020, 42(19): 140–145 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.10.027
    [50]
    朱炜, 郭航. 现代舰船隐身技术的若干方法研究[J]. 舰船电子工程, 2014, 34(12): 22–26.

    ZHU W, GUO H. Research on the methods of warship stealthy technology[J]. Ship Electronic Engineering, 2014, 34(12): 22–26 (in Chinese).
    [51]
    邱志明, 罗荣, 王亮, 等. 军事智能技术在海战领域应用的几点思考[J]. 空天防御, 2019, 2(1): 1–5. doi: 10.3969/j.issn.2096-4641.2019.01.001

    QIU Z M, LUO R, WANG L, et al. Some thoughts on the application of military intelligence technology in naval warfare[J]. Air & Space Defense, 2019, 2(1): 1–5 (in Chinese). doi: 10.3969/j.issn.2096-4641.2019.01.001
    [52]
    马运义. 发展绿色舰船、抢占未来舰船发展制高点[J]. 中国舰船研究, 2016, 11(1): 13–18,26. doi: 10.3969/j.issn.1673-3185.2016.01.003

    MA Y Y. Developing green ships for domination in future ship development[J]. Chinese Journal of Ship Research, 2016, 11(1): 13–18,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.003
    [53]
    CHAMBERS A M, YETIV S A. The great green fleet: the U. S. navy and fossil-fuel alternatives[J]. Naval War College Review, 2011, 64(3): 61–77.
  • Related Articles

    [1]ZHOU Xintao, WU Guomin, LI Decong. Analysis of naval warship blast and shock resistance technology system[J]. Chinese Journal of Ship Research, 2023, 18(2): 127-139. DOI: 10.19693/j.issn.1673-3185.02362
    [2]ZHU Wei, CHEN Wei, FENG Yang. 水面舰船雷达波隐身技术与总体设计[J]. Chinese Journal of Ship Research, 2015, 10(3): 1-6,56. DOI: 10.3969/j.issn.1673-3185.2015.03.001
    [3]Liu Weiguo, Zhao Yuanzheng, Liu Hui. 舰船氧、氮气体分离技术现状与展望[J]. Chinese Journal of Ship Research, 2012, 7(2): 102-107. DOI: 10.3969/j.issn.1673-3185.2012.02.019
    [4]Zhang Ping, Hong Weihon. 舰船总体区域设计技术研究[J]. Chinese Journal of Ship Research, 2009, 4(3): 33-37. DOI: 10.3969/j.issn.1673-3185.2009.03.007
    [5]Zhang Weijun. 舰船隐身面临的挑战及技术发展展望[J]. Chinese Journal of Ship Research, 2007, 2(6): 46-49. DOI: 10.3969/j.issn.1673-3185.2007.06.009
    [6]Zheng Xinghai, Li Hua, Peng Yuhui. 舰船细水雾灭火技术应用研究[J]. Chinese Journal of Ship Research, 2007, 2(2): 71-74. DOI: 10.3969/j.issn.1673-3185.2007.02.017
    [7]Li Guanghui. 舰船安全性设计技术[J]. Chinese Journal of Ship Research, 2007, 2(2): 63-66. DOI: 10.3969/j.issn.1673-3185.2007.02.015
    [8]Wang Shuwen,   Tang Liyi,   Liu Xiufeng . 舰船恒压消防供水技术[J]. Chinese Journal of Ship Research, 2006, 1(5-6): 57-60. DOI: 10.3969/j.issn.1673-3185.2006.06.013
    [9]Zhong Yuxiang, Xu Shihua. 舰船装置的隐身技术[J]. Chinese Journal of Ship Research, 2006, 1(4): 76-80. DOI: 10.3969/j.issn.1673-3185.2006.04.018
    [10]Zheng Junlin, Chen Xingang, Zheng Chunbin, Zhao Liuping. 舰船电场隐身技术[J]. Chinese Journal of Ship Research, 2006, 1(4): 48-51. DOI: 10.3969/j.issn.1673-3185.2006.04.011
  • Cited by

    Periodical cited type(7)

    1. 武俊智,王文卓,杨欣华,邓乐淳,陈强. 银包覆铁硅铬粉的制备与电磁屏蔽性能研究. 中国舰船研究. 2024(02): 173-180 . 本站查看
    2. 王元慧,任哲达,邵兴超,王心玮. 基于非奇异快速终端滑模的多水面船固定时间协同控制. 控制与决策. 2024(08): 2637-2646 .
    3. 杨成斌,吴晓阳,张鲁君,刘先越. 智能无人艇关键技术需求分析研究. 科技创新与应用. 2024(28): 8-14 .
    4. 范润华,王宗祥,杨鹏涛,刘峣. 超材料在舰船装备领域应用研究进展. 材料开发与应用. 2024(05): 1-16 .
    5. 杨萌,龚俊斌,曹晋,周塔. 基于智能模糊推理系统的船型概念方案快速生成研究. 中国舰船研究. 2024(06): 45-55 . 本站查看
    6. 高裕浩,何腾武,赵敏. 基于OpenMDAO的BLISS-2000多学科设计优化:流程、策略与参数研究. 中国舰船研究. 2024(06): 135-149 . 本站查看
    7. 董赞. 某型SPMT车组重载条件下的运动性能测试. 科技资讯. 2023(24): 82-85 .

    Other cited types(3)

Catalog

    Article views (1894) PDF downloads (557) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return