Citation: | SUN S T, XUE Y L, WANG M C, et al. Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process[J]. Chinese Journal of Ship Research, 2023, 18(3): 222–230. DOI: 10.19693/j.issn.1673-3185.02914 |
[1] |
KURZKE J, HALLIWELL I. Propulsion and power: an exploration of gas turbine performance modeling[M]. Cham, Switzerland: Springer International Publishing, 2018.
|
[2] |
PIEREZAN J, MAIDL G, YAMAO E M, et al. Cultural coyote optimization algorithm applied to a heavy duty gas turbine operation[J]. Energy Conver-sion and Management, 2019, 199: 111932. doi: 10.1016/j.enconman.2019.111932
|
[3] |
RIGO-MARIANI R, ZHANG C, ROMAGNOLI A, et al. A combined cycle gas turbine model for heat and power dispatch subject to grid constraints[J]. IEEE Transactions on Sustainable Energy, 2019, 11(1): 448–456.
|
[4] |
TSOUTSANIS E, MESKIN N. Dynamic performance simulation and control of gas turbines used for hybrid gas/wind energy applications[J]. Applied Thermal Engineering, 2019, 147: 122–142. doi: 10.1016/j.applthermaleng.2018.09.031
|
[5] |
KULIKOV G G, THOMPSON H A. Dynamic modelling of gas turbines: identification, simulation, condition monitoring and optimal control[M]. [S.1.] : Springer Science & Business Media, 2004.
|
[6] |
WANG C, LI D, LI Z, et al. Optimization of controllers for gas turbine based on probabilistic robustness[J]. Journal of engineering for gas turbines and power, 2009, 131(5): 054502. doi: 10.1115/1.2981174
|
[7] |
MOHAMED O, KHALIL A. Progress in modeling and con-trol of gas turbine power generation systems: a survey[J]. Energies, 2020, 13(9): 2358. doi: 10.3390/en13092358
|
[8] |
YOUSEFI I, YARI M, SHOOREHDELI M A. Modeling, identification and control of a heavy duty industrial gas turbine[C]//2013 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan: IEEE, 2013: 611-615.
|
[9] |
ASGARI H, CHEN X Q, SAINUDIIN R. Modelling and simulation of gas turbines[J]. International Journal of Modelling, Identification and Control, 2013, 20(3): 253–270. doi: 10.1504/IJMIC.2013.057137
|
[10] |
张显库, 祝慧颖. 基于正弦函数处理新息的船舶模型参数辨识新算法[J]. 中国舰船研究, 2021, 94(5): 158–162. doi: 10.19693/j.issn.1673-3185.02122
ZHANG X K, ZHU H Y. A new algorithm for para-meter identification of ship model based on sinusoidal func-tion processing innovation[J]. Chinese Journal of Ship Research, 2021, 94(5): 158–162 (in Chinese). doi: 10.19693/j.issn.1673-3185.02122
|
[11] |
郑涵, 俞孟蕻, 袁伟. 基于反馈粒子滤波的船舶模型参数辨识[J]. 中国舰船研究, 2019, 80(3): 158–162, 178. doi: 10.19693/j.issn.1673-3185.01323
ZHENG H, YU M H, YUAN W. Parameter identification of ship model based on feedback particle filter[J]. Chinese Journal of Ship Research, 2019, 80(3): 158–162, 178 (in Chinese). doi: 10.19693/j.issn.1673-3185.01323
|
[12] |
SHALAN H E, HASSAN M A M, BAHGAT A B G. Parameter estimation and dynamic simulation of gas turbine model in combined cycle power plants based on actual operational data[J]. Journal of American Science, 2011, 7(5): 303–310.
|
[13] |
贾宏杰, 戚冯宇, 徐宪东, 等. 微型燃气轮机型综合能源系统的建模与辨识[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(2): 215–223.
JIA H G, QI F G, XU X D, et al. Modeling and iden-tification of integrated energy system of micro gas turbine[J]. Journal of Tianjin University (Natural Sci-ence and Engineering Technology Edition), 2017, 50(2): 215–223 (in Chinese).
|
[14] |
MAZAHERI A, MANSOURI M, SHOOREDELI M A. Parameter estimation of Hammerstein-Wiener ARMAX systems using unscented Kalman filter[C]//2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM). Tehran, Iran: IEEE, 2014: 298-303.
|
[15] |
高林, 夏俊荣, 戴义平, 等. 基于遗传算法的联合循环机组建模和参数辨识[J]. 电力系统自动化, 2010, 34(4): 34–37, 83.
GAO L, XIA J R, DAI Y P, et al. Modeling and para-meter identification of combined cycle unit based on genetic algorithm[J]. Power System Automation, 2010, 34(4): 34–37, 83 (in Chinese).
|
[16] |
HOU G, GONG L, HUANG C, et al. Fuzzy modeling and fast model predictive control of gas turbine system[J]. Energy, 2020, 200: 117465. doi: 10.1016/j.energy.2020.117465
|
[17] |
LIU Z, KARIMI I A. Gas turbine performance prediction via machine learning[J]. Energy, 2020, 192: 116627. doi: 10.1016/j.energy.2019.116627
|
[18] |
ZHANG S, LIU S, WEI F, et al. Parameter identifi-cation of hypersonic vehicle based on LSTM algori-thm[C]//The 40th Chinese Control Conference (CCC). Shanghai, China: IEEE, 2021: 1230–1235.
|
[19] |
陈龙. 基于长短记忆模式递归神经网络(LSTM-RNN)的异步电机参数辨识研究[D]. 安徽大学, 2018.
CHEN L. Research on parameter identification of in-duction motor based on long-short memory mode recurrent neural network (LSTM-RNN). [D]Anhui: Anhui University, 2018 (in Chinese) .
|
[20] |
SHENG H, XIAO J, WANG P. Lithium iron phosphate battery electric vehicle state-of-charge estimation based on evolutionary Gaussian mixture regression[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 544–551.
|
[21] |
CHEN H, ZENG Y, HUANG J, et al. Deep neural network Gaussian process regression method for end-to-end driving behavior learning[C]//The 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA). Hangzhou, China: IEEE, 2020: 64–73.
|
[22] |
WANG Y, FENG B, HUA Q S, et al. Short-term solar power forecasting: a combined long short-term memory and Gaussian process regression method[J]. Sustainability, 2021, 13(7): 3665.
|
[23] |
DAILY J W. Statistical thermodynamics: an engineering approach[M]. [S.1.]: Cambridge University Press, 2018.
|
[24] |
YEE S K, MILANOVIC J V, HUGHES F M. Overview and comparative analysis of gas turbine models for system stability studies[J]. IEEE Transactions on power systems, 2008, 23(1): 108–118. doi: 10.1109/TPWRS.2007.907384
|
[25] |
RAZAK A M Y. Industrial gas turbines: performance and operability [M]. [S.1.] Elsevier Publishing House, 2007.
|
[26] |
COHEN H, ROGERS G F C, SARAVANAMUTTOO H I H. Gas turbine theory [J]. England: Pearson Education Ltd. , 2009.
|
[27] |
SUN G, JIANG C, WANG X, et al. Short-term build-ing load forecast based on a data-mining feature selec-tion and LSTM-RNN method[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(7): 1002–1010. doi: 10.1002/tee.23144
|
[28] |
FISCHER T, KRAUSS C. Deep learning with long short-term memory networks for financial market pre-dictions[J]. European Journal of Operational Research, 2018, 270(2): 654–669. doi: 10.1016/j.ejor.2017.11.054
|
[29] |
GONZALEZ J, YU W. Non-linear system modeling using LSTM neural networks[J]. IFAC-PapersOnLine, 2018, 51(13): 485–489. doi: 10.1016/j.ifacol.2018.07.326
|
[30] |
SCHULZ E, SPEEKENBRINK M, KRAUSE A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions[J]. Journal of Ma-thematical Psychology, 2018, 85: 1–16. doi: 10.1016/j.jmp.2018.03.001
|
[31] |
LIU K, HU X, WEI Z, et al. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries[J]. IEEE Transactions on Trans-portation Electrification, 2019, 5(4): 1225–1236. doi: 10.1109/TTE.2019.2944802
|
[32] |
WANG Y. A new concept using LSTM neural networks for dynamic system identification[C]//2017 American control conference (ACC). Seattle, WA: IEEE, 2017: 5324–5329.
|
[33] |
CHEN F, RUAN C, YU T, et al. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor[J]. Aerospace Science and Technology, 2019, 92: 126–138. doi: 10.1016/j.ast.2019.05.052
|
[34] |
MARIN G E, MENDELEEV D I, AKHMETSHIN A R. Analysis of changes in the thermophysical parameters of the gas turbine unit working fluid depending on the fuel gas composition[C]//2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 2019: 1–4.
|
[35] |
LIU Z, KARIMI I A. New operating strategy for a combined cycle gas turbine power plant[J]. Energy Conversion and Management, 2018, 171: 1675–1684. doi: 10.1016/j.enconman.2018.06.110
|
[1] | LI Shijie, HE Jiawei, LIU Jialun, LIU Taixu, XU Chengqi. Ship heading and trajectory control method based on L1-GPR[J]. Chinese Journal of Ship Research, 2025, 20(1): 278-288. DOI: 10.19693/j.issn.1673-3185.03888 |
[2] | FAN Yuwei, GUO Tengbo, LI Zhe, HONG Liangyou, LIU Chao, JIANG Dongxiang. Structural dynamic load prediction method based on long short-term memory network[J]. Chinese Journal of Ship Research, 2024, 19(6): 228-236. DOI: 10.19693/j.issn.1673-3185.03463 |
[3] | WEI Ye, ZHANG Zhenguo. Modeling and characteristic analysis of unsteady broadband excitation spectrum of thruster based on OU-Gaussian process[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04109 |
[4] | HOU Muyu, GONG Shuhong, XIAO Donghai, ZUO Yanchun, LIU Yu. Bagging-GPR method for ship RCS extrapolation in frequency domain[J]. Chinese Journal of Ship Research, 2023, 18(4): 103-110. DOI: 10.19693/j.issn.1673-3185.03147 |
[5] | YANG Liu, XU Donghao. Aircraft carrier landing process simulation based on extremely short-term prediction of ship motion[J]. Chinese Journal of Ship Research, 2018, 13(4): 99-103. DOI: 10.19693/j.issn.1673-3185.01193 |
[6] | HAO Jinyu, ZHANG Xiaobin, YANG Yuanlong. 船用蒸汽蓄热器放汽过程动态特性数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(3): 98-101,107. DOI: 10.3969/j.issn.1673-3185.2015.03.016 |
[7] | Yan Fuyu, Zhu Xiaojun, Peng Fei. Gaussian Sampling Path Planning of Ship Assembly/Disassembly Based on RRTConCon Algorithm[J]. Chinese Journal of Ship Research, 2011, 6(5): 108-112. DOI: 10.3969/j.issn.16733185.2011.05.022 |
[8] | Shen Xiaohong, Wu Qirui, Xiao Di, Deng Aimin. 双断级滑行艇的阻力回归公式[J]. Chinese Journal of Ship Research, 2010, 5(2): 59-63. DOI: 10.3969/j.issn.1673-3185.2010.02.012 |
[9] | Zong Zhi, Bi Junying, Wu Qirui. 国外航空母舰主尺度与航速关系的回归分析[J]. Chinese Journal of Ship Research, 2007, 2(4): 14-19,25. DOI: 10.3969/j.issn.1673-3185.2007.04.004 |
[10] | Li Dongqin, Wang Lizheng, Wang Chengfang. Method of Support Vector Regression in Modeling Ship Principal Particulars[J]. Chinese Journal of Ship Research, 2007, 2(3): 18-21,39. DOI: 10.3969/j.issn.1673-3185.2007.03.004 |
1. |
张浩晢,杨智博,焦绪国,吕成兴,雷鹏. 基于增强Bi-LSTM的船舶运动模型辨识. 中国舰船研究. 2025(01): 76-84 .
![]() | |
2. |
孙守泰,汤冰,薛亚丽,孙立. 基于混合深度学习的压气机喘振快速诊断及自抗扰控制方法. 中国舰船研究. 2024(02): 187-196 .
![]() | |
3. |
魏澈,苏开元,邱银锋,谢小荣,李国香,车久玮. 海上油田群新型电力系统的构建路径与关键技术. 电网技术. 2024(08): 3287-3298 .
![]() |