Citation: | HE H K, WANG N. Monocular visual servo-based stabilization control of underactuated unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2022, 17(5): 166–174, 183. DOI: 10.19693/j.issn.1673-3185.02853 |
[1] |
刘祥, 叶晓明, 王泉斌, 等. 无人水面艇局部路径规划算法研究综述[J]. 中国舰船研究, 2021, 16(增刊 1): 1–10. doi: 10.19693/j.issn.1673-3185.02538
LIU X, YE X M, WANG Q B, et al. Review on the research of local path planning algorithms for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2021, 16(Supp 1): 1–10 (in Chinese). doi: 10.19693/j.issn.1673-3185.02538
|
[2] |
欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18–24. doi: 10.19693/j.issn.1673-3185.01639
OUYANG Z L, WANG H D, HUANG Y, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18–24 (in Chinese). doi: 10.19693/j.issn.1673-3185.01639
|
[3] |
余亚磊, 苏荣彬, 冯旭, 等. 基于速变LOS的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163–171. doi: 10.19693/j.issn.1673-3185.01377
YU Y L, SU R B, FENG X, et al. Tracking control of backstepping adaptive path of unmanned surface vessels based on surge-varying LOS[J]. Chinese Journal of Ship Research, 2019, 14(3): 163–171 (in Chinese). doi: 10.19693/j.issn.1673-3185.01377
|
[4] |
WANG N, AHN C K. Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8566–8575. doi: 10.1109/TIE.2019.2947845
|
[5] |
BROCKETT R W. Asymptotic stability and feedback stabilization[C]//Differential Geometric Control Theory. Boston, MA: Birkhäuser Boston, 1983: 181−191.
|
[6] |
GHOMMAM J, MNIF F, DERBEL N. Global stabilisation and tracking control of underactuated surface vessels[J]. IET Control Theory & Applications, 2010, 4(1): 71–88.
|
[7] |
REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel[J]. Automatica, 1997, 33(12): 2249–2254. doi: 10.1016/S0005-1098(97)00141-6
|
[8] |
GHOMMAM J, MNIF F, BENALI A, et al. Asymptotic backstepping stabilization of an underactuated surface vessel[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1150–1157. doi: 10.1109/TCST.2006.880220
|
[9] |
PETTERSEN K Y, FOSSEN T I. Underactuated dynamic positioning of a ship-experimental results[J]. IEEE Transactions on Control Systems Technology, 2000, 8(5): 856–863. doi: 10.1109/87.865859
|
[10] |
MAZENC F, PETTERSEN K, NIJMEIJER H. Global uniform asymptotic stabilization of an underactuated surface vessel[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1759–1762. doi: 10.1109/TAC.2002.803554
|
[11] |
DONG W J, GUO Y. Global time-varying stabilization of underactuated surface vessel[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 859–864. doi: 10.1109/TAC.2005.849248
|
[12] |
董早鹏, 万磊, 李岳明, 等. 极坐标系下的欠驱动无人艇分块反步镇定控制[J]. 交通运输工程学报, 2015, 15(4): 61–68.
DONG Z P, WAN L, LI Y M, et al. Block backstepping stabilization control of underactuated USV in polar coordinate system[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 61–68 (in Chinese).
|
[13] |
丁文东, 徐德, 刘希龙, 等. 移动机器人视觉里程计综述[J]. 自动化学报, 2018, 44(3): 385–400. doi: 10.16383/j.aas.2018.c170107
DING W D, XU D, LIU X L, et al. Review on visual odometry for mobile robots[J]. Acta Automatica Sinica, 2018, 44(3): 385–400 (in Chinese). doi: 10.16383/j.aas.2018.c170107
|
[14] |
HE H K, WANG N. Monocular visual servo of unmanned surface vehicles with view-field constraints[C]//2012 33rd Chinese Control and Decision Conference (CCDC). Kunming, China: IEEE, 2021: 973−978.
|
[15] |
MARTINS A, ALMEIDA J M, FERREIRA H, et al. Autonomous surface vehicle docking manoeuvre with visual information[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007: 4994−4999.
|
[16] |
DUNBABIN M, LANG B, WOOD B. Vision-based docking using an autonomous surface vehicle[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008: 26−32.
|
[17] |
KIM Y H, LEE S W, YANG H S, et al. Toward autonomous robotic containment booms: Visual servoing for robust inter-vehicle docking of surface vehicles[J]. Intelligent Service Robotics, 2012, 5(1): 1–18. doi: 10.1007/s11370-011-0100-0
|
[18] |
徐海彬, 刘畅, 田建东, 等. 基于视觉和定位系统的无人艇自主对接系统[J]. 计算机工程与设计, 2021, 42(9): 2606–2613. doi: 10.16208/j.issn1000-7024.2021.09.027
XU H B, LIU C, TIAN J D, et al. Autonomous docking system for USV based on vision and position system[J]. Computer Engineering and Design, 2021, 42(9): 2606–2613 (in Chinese). doi: 10.16208/j.issn1000-7024.2021.09.027
|
[19] |
张山甲, 王建华, 郑翔, 等. 基于视觉伺服的欠驱动无人水面艇自主靠泊方法[J]. 船舶工程, 2020, 42(7): 144–151.
ZHANG S J, WANG J H, ZHENG X, et al. Autonomous berthing method of underactuated unmanned surface vehicle based on visual servo[J]. Ship Engineering, 2020, 42(7): 144–151 (in Chinese).
|
[20] |
WANG N, HE H K. Adaptive homography-based visual servo for micro unmanned surface vehicles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 4875–4882. doi: 10.1007/s00170-019-03994-7
|
[21] |
WANG N, HE H K. Extreme learning-based monocular visual servo of an unmanned surface vessel[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5152–5163. doi: 10.1109/TII.2020.3033794
|
[22] |
WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9648–9658. doi: 10.1109/TIE.2019.2952786
|
[23] |
邹黎敏, 胡兴凯, 伍俊良. 正定矩阵的性质及判别法[J]. 中山大学学报(自然科学版), 2009, 48(5): 16–23. doi: 10.3321/j.issn:0529-6579.2009.05.004
ZOU L M, HU X K, WU J L. The properties and discrimination of the positive definite matrices[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(5): 16–23 (in Chinese). doi: 10.3321/j.issn:0529-6579.2009.05.004
|
[24] |
HURWITZ A. Über algebraische gebilde mit eindeutigen transformationen in sich[J]. Mathematische Annalen, 1892, 41(3): 403–442. doi: 10.1007/BF01443420
|
[25] |
TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control, 1997, 42(5): 698. doi: 10.1109/9.580878
|
[26] |
闵颖颖, 刘允刚. Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报(工学版), 2007, 37(1): 51–55,114. doi: 10.3969/j.issn.1672-3961.2007.01.013
MIN Y Y, LIU Y G. Barbalat lemma and its application in analysis of system stability[J]. Journal of Shandong University (Engineering Science), 2007, 37(1): 51–55,114 (in Chinese). doi: 10.3969/j.issn.1672-3961.2007.01.013
|
[27] |
LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 2: 1150−1157.
|
[28] |
ZHANG Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 1: 666−673.
|
[29] |
FANG Y C, DIXON W E, DAWSON D M, et al. Homography-based visual servo regulation of mobile robots[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(5): 1041–1050. doi: 10.1109/TSMCB.2005.850155
|
[30] |
FAUGERAS O D, LUSTMAN F. Motion and structure from motion in a piecewise planar environment[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1988, 2(3): 485–508. doi: 10.1142/S0218001488000285
|
[31] |
DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713–1722. doi: 10.1016/j.automatica.2006.04.026
|
[32] |
DAI S L, HE S D, LIN H, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237–4246. doi: 10.1109/TIE.2017.2758743
|
[33] |
GHOMMAM J, MNIF F, BENALI A, et al. Observer design for Euler Lagrange systems: application to path following control of an underactuated surface vessel[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 2883−2888.
|
1. |
王宁,贾薇,吴浩峻. 欠驱动无人船路径跟踪:一种有限时间正切漂角视线制导方法. 控制与决策. 2025(01): 187-195 .
![]() | |
2. |
王宁,吴伟,王元元,孙赫男. 多特征融合的无人艇视觉目标长时相关鲁棒跟踪. 中国舰船研究. 2024(01): 62-74 .
![]() | |
3. |
何红坤,王宁,张富宇,韩冰. 水面无人艇单目视觉伺服自主控制研究综述. 中国舰船研究. 2024(01): 15-28 .
![]() | |
4. |
孙岩霆,王荣杰,蒋德松. 融合A~*与DWA算法的水面船艇动态路径规划. 仪器仪表学报. 2024(01): 301-310 .
![]() | |
5. |
褚天仁,陈羽. 基于输入约束与模糊参数的无人艇航迹规划. 舰船电子对抗. 2024(04): 59-66 .
![]() | |
6. |
王宁,吴伟,王元元,孙赫男,冯远. 多特征融合的无人艇视觉小目标鲁棒跟踪. 中国舰船研究. 2024(05): 65-78 .
![]() | |
7. |
姚凤翔,黄振,褚天仁,何红坤,张海华,许凯玮,时英玉. 欠驱动无人船全局轨迹规划方法研究. 舰船电子对抗. 2024(05): 26-31+100 .
![]() | |
8. |
王宁,武慧慧,张宇航. 考虑操纵约束的无人艇海域全覆盖路径规划. 中国舰船研究. 2024(06): 210-218 .
![]() | |
9. |
吴伟,王宁,王元元,孙赫男. 多特征融合的无人船视觉目标跟踪. 大连海事大学学报. 2023(04): 37-45+56 .
![]() |