HE H K, WANG N. Monocular visual servo-based stabilization control of underactuated unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2022, 17(5): 166–174, 183. DOI: 10.19693/j.issn.1673-3185.02853
Citation: HE H K, WANG N. Monocular visual servo-based stabilization control of underactuated unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2022, 17(5): 166–174, 183. DOI: 10.19693/j.issn.1673-3185.02853

Monocular visual servo-based stabilization control of underactuated unmanned surface vehicle

More Information
  • Received Date: April 14, 2022
  • Revised Date: August 10, 2022
  • Accepted Date: August 14, 2022
  • Available Online: August 14, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Aiming at the accurate posture stabilization problem of an under-actuated unmanned surface vehicle (USV) in GPS-denied environments, a monocular visual servo stabilization control scheme is proposed based on homography.
      Methods  By virtue of the homography decomposition technique, posture errors with an unknown scale factor are directly reconstructed from current and desired images, which thoroughly removes the calibration of extrinsic camera parameters and priori information on visual targets; with respect to the under-actuation constraint, a periodic function to persistently excite the yaw angle is incorporated into the continuous time-variant output feedback controller, allowing the USV to be stabilized in the absence of image depth, movement velocities and model parameters.
      Results  Under the framework of the Lyapunov theory, the closed-loop visual servo system of the USV is rigorously proven to be asymptotically stable by Barbalat lemma.
      Conclusions  By installing an onboard monocular camera, USV posture errors can be precisely stabilized with the aid of the proposed visual servo strategy, providing significant technique support for practical applications including docking, berthing, dynamic positioning, etc.
  • [1]
    刘祥, 叶晓明, 王泉斌, 等. 无人水面艇局部路径规划算法研究综述[J]. 中国舰船研究, 2021, 16(增刊 1): 1–10. doi: 10.19693/j.issn.1673-3185.02538

    LIU X, YE X M, WANG Q B, et al. Review on the research of local path planning algorithms for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2021, 16(Supp 1): 1–10 (in Chinese). doi: 10.19693/j.issn.1673-3185.02538
    [2]
    欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18–24. doi: 10.19693/j.issn.1673-3185.01639

    OUYANG Z L, WANG H D, HUANG Y, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18–24 (in Chinese). doi: 10.19693/j.issn.1673-3185.01639
    [3]
    余亚磊, 苏荣彬, 冯旭, 等. 基于速变LOS的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163–171. doi: 10.19693/j.issn.1673-3185.01377

    YU Y L, SU R B, FENG X, et al. Tracking control of backstepping adaptive path of unmanned surface vessels based on surge-varying LOS[J]. Chinese Journal of Ship Research, 2019, 14(3): 163–171 (in Chinese). doi: 10.19693/j.issn.1673-3185.01377
    [4]
    WANG N, AHN C K. Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8566–8575. doi: 10.1109/TIE.2019.2947845
    [5]
    BROCKETT R W. Asymptotic stability and feedback stabilization[C]//Differential Geometric Control Theory. Boston, MA: Birkhäuser Boston, 1983: 181−191.
    [6]
    GHOMMAM J, MNIF F, DERBEL N. Global stabilisation and tracking control of underactuated surface vessels[J]. IET Control Theory & Applications, 2010, 4(1): 71–88.
    [7]
    REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel[J]. Automatica, 1997, 33(12): 2249–2254. doi: 10.1016/S0005-1098(97)00141-6
    [8]
    GHOMMAM J, MNIF F, BENALI A, et al. Asymptotic backstepping stabilization of an underactuated surface vessel[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1150–1157. doi: 10.1109/TCST.2006.880220
    [9]
    PETTERSEN K Y, FOSSEN T I. Underactuated dynamic positioning of a ship-experimental results[J]. IEEE Transactions on Control Systems Technology, 2000, 8(5): 856–863. doi: 10.1109/87.865859
    [10]
    MAZENC F, PETTERSEN K, NIJMEIJER H. Global uniform asymptotic stabilization of an underactuated surface vessel[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1759–1762. doi: 10.1109/TAC.2002.803554
    [11]
    DONG W J, GUO Y. Global time-varying stabilization of underactuated surface vessel[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 859–864. doi: 10.1109/TAC.2005.849248
    [12]
    董早鹏, 万磊, 李岳明, 等. 极坐标系下的欠驱动无人艇分块反步镇定控制[J]. 交通运输工程学报, 2015, 15(4): 61–68.

    DONG Z P, WAN L, LI Y M, et al. Block backstepping stabilization control of underactuated USV in polar coordinate system[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 61–68 (in Chinese).
    [13]
    丁文东, 徐德, 刘希龙, 等. 移动机器人视觉里程计综述[J]. 自动化学报, 2018, 44(3): 385–400. doi: 10.16383/j.aas.2018.c170107

    DING W D, XU D, LIU X L, et al. Review on visual odometry for mobile robots[J]. Acta Automatica Sinica, 2018, 44(3): 385–400 (in Chinese). doi: 10.16383/j.aas.2018.c170107
    [14]
    HE H K, WANG N. Monocular visual servo of unmanned surface vehicles with view-field constraints[C]//2012 33rd Chinese Control and Decision Conference (CCDC). Kunming, China: IEEE, 2021: 973−978.
    [15]
    MARTINS A, ALMEIDA J M, FERREIRA H, et al. Autonomous surface vehicle docking manoeuvre with visual information[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007: 4994−4999.
    [16]
    DUNBABIN M, LANG B, WOOD B. Vision-based docking using an autonomous surface vehicle[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008: 26−32.
    [17]
    KIM Y H, LEE S W, YANG H S, et al. Toward autonomous robotic containment booms: Visual servoing for robust inter-vehicle docking of surface vehicles[J]. Intelligent Service Robotics, 2012, 5(1): 1–18. doi: 10.1007/s11370-011-0100-0
    [18]
    徐海彬, 刘畅, 田建东, 等. 基于视觉和定位系统的无人艇自主对接系统[J]. 计算机工程与设计, 2021, 42(9): 2606–2613. doi: 10.16208/j.issn1000-7024.2021.09.027

    XU H B, LIU C, TIAN J D, et al. Autonomous docking system for USV based on vision and position system[J]. Computer Engineering and Design, 2021, 42(9): 2606–2613 (in Chinese). doi: 10.16208/j.issn1000-7024.2021.09.027
    [19]
    张山甲, 王建华, 郑翔, 等. 基于视觉伺服的欠驱动无人水面艇自主靠泊方法[J]. 船舶工程, 2020, 42(7): 144–151.

    ZHANG S J, WANG J H, ZHENG X, et al. Autonomous berthing method of underactuated unmanned surface vehicle based on visual servo[J]. Ship Engineering, 2020, 42(7): 144–151 (in Chinese).
    [20]
    WANG N, HE H K. Adaptive homography-based visual servo for micro unmanned surface vehicles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 4875–4882. doi: 10.1007/s00170-019-03994-7
    [21]
    WANG N, HE H K. Extreme learning-based monocular visual servo of an unmanned surface vessel[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5152–5163. doi: 10.1109/TII.2020.3033794
    [22]
    WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9648–9658. doi: 10.1109/TIE.2019.2952786
    [23]
    邹黎敏, 胡兴凯, 伍俊良. 正定矩阵的性质及判别法[J]. 中山大学学报(自然科学版), 2009, 48(5): 16–23. doi: 10.3321/j.issn:0529-6579.2009.05.004

    ZOU L M, HU X K, WU J L. The properties and discrimination of the positive definite matrices[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(5): 16–23 (in Chinese). doi: 10.3321/j.issn:0529-6579.2009.05.004
    [24]
    HURWITZ A. Über algebraische gebilde mit eindeutigen transformationen in sich[J]. Mathematische Annalen, 1892, 41(3): 403–442. doi: 10.1007/BF01443420
    [25]
    TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control, 1997, 42(5): 698. doi: 10.1109/9.580878
    [26]
    闵颖颖, 刘允刚. Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报(工学版), 2007, 37(1): 51–55,114. doi: 10.3969/j.issn.1672-3961.2007.01.013

    MIN Y Y, LIU Y G. Barbalat lemma and its application in analysis of system stability[J]. Journal of Shandong University (Engineering Science), 2007, 37(1): 51–55,114 (in Chinese). doi: 10.3969/j.issn.1672-3961.2007.01.013
    [27]
    LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 2: 1150−1157.
    [28]
    ZHANG Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 1: 666−673.
    [29]
    FANG Y C, DIXON W E, DAWSON D M, et al. Homography-based visual servo regulation of mobile robots[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(5): 1041–1050. doi: 10.1109/TSMCB.2005.850155
    [30]
    FAUGERAS O D, LUSTMAN F. Motion and structure from motion in a piecewise planar environment[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1988, 2(3): 485–508. doi: 10.1142/S0218001488000285
    [31]
    DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713–1722. doi: 10.1016/j.automatica.2006.04.026
    [32]
    DAI S L, HE S D, LIN H, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237–4246. doi: 10.1109/TIE.2017.2758743
    [33]
    GHOMMAM J, MNIF F, BENALI A, et al. Observer design for Euler Lagrange systems: application to path following control of an underactuated surface vessel[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 2883−2888.
  • Related Articles

    [1]ZHANG Jun, SHEN Qiqing, REN Junjie, LIU Zhilin. Vertical stabilization of catamaran based on low-high gain feedback control and extended state observer[J]. Chinese Journal of Ship Research, 2025, 20(1): 300-308. DOI: 10.19693/j.issn.1673-3185.04010
    [2]GUO Qiang, WANG Jiaqi, ZHANG Xianku, MA Daocheng. BLF-based adaptive path following control for unmanned surface vehicles under shallow water effects[J]. Chinese Journal of Ship Research, 2025, 20(1): 263-271. DOI: 10.19693/j.issn.1673-3185.04240
    [3]LIAO Yulei, CHEN Congcong, DU Tingpeng, WANG Bo, LI Ye. Variable output model-free adaptive heading control method for unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2024, 19(1): 75-83. DOI: 10.19693/j.issn.1673-3185.02989
    [4]HE Hongkun, WANG Ning, ZHANG Fuyu, HAN Bing. Review of research on monocular visual servo-based autonomous control of unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2024, 19(1): 15-28. DOI: 10.19693/j.issn.1673-3185.03230
    [5]Ship course keeping control method with quantitative control system[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04093
    [6]WANG Weikai, SU Hang, ZHANG Enhua. Fixed-time trajectory tracking control for underactuated surface vessels[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03088
    [7]LIU Xuan, LI Weibo, ZOU Zhenjie, GAO Jiajun, ZHAN Jinhao. Feedback-feedforward variable gain iterative learning method adopted in electro-hydraulic position servo system[J]. Chinese Journal of Ship Research, 2022, 17(6): 148-154. DOI: 10.19693/j.issn.1673-3185.02461
    [8]HUO Jianghang, JIANG Xiangyuan, LUAN Yizhong, MA Xiaojing. Design of AUV depth controller based on L1 adaptive theory[J]. Chinese Journal of Ship Research, 2021, 16(5): 150-157. DOI: 10.19693/j.issn.1673-3185.02114
    [9]WU Wentao, GU Nan, PENG Zhouhua, LIU Lu, WANG Dan. Distributed time-varying formation control for unmanned surface vehicles guided by multiple leaders[J]. Chinese Journal of Ship Research, 2020, 15(1): 21-30. DOI: 10.19693/j.issn.1673-3185.01734
    [10]Ma Chao, Zhang Xianku, Yang Guangping. Improved nonlinear control for ship course-keeping based on Lyapunov stability[J]. Chinese Journal of Ship Research, 2019, 14(1): 150-155, 161. DOI: 10.19693/j.issn.1673-3185.01111
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 王宁,贾薇,吴浩峻. 欠驱动无人船路径跟踪:一种有限时间正切漂角视线制导方法. 控制与决策. 2025(01): 187-195 .
    2. 王宁,吴伟,王元元,孙赫男. 多特征融合的无人艇视觉目标长时相关鲁棒跟踪. 中国舰船研究. 2024(01): 62-74 . 本站查看
    3. 何红坤,王宁,张富宇,韩冰. 水面无人艇单目视觉伺服自主控制研究综述. 中国舰船研究. 2024(01): 15-28 . 本站查看
    4. 孙岩霆,王荣杰,蒋德松. 融合A~*与DWA算法的水面船艇动态路径规划. 仪器仪表学报. 2024(01): 301-310 .
    5. 褚天仁,陈羽. 基于输入约束与模糊参数的无人艇航迹规划. 舰船电子对抗. 2024(04): 59-66 .
    6. 王宁,吴伟,王元元,孙赫男,冯远. 多特征融合的无人艇视觉小目标鲁棒跟踪. 中国舰船研究. 2024(05): 65-78 . 本站查看
    7. 姚凤翔,黄振,褚天仁,何红坤,张海华,许凯玮,时英玉. 欠驱动无人船全局轨迹规划方法研究. 舰船电子对抗. 2024(05): 26-31+100 .
    8. 王宁,武慧慧,张宇航. 考虑操纵约束的无人艇海域全覆盖路径规划. 中国舰船研究. 2024(06): 210-218 . 本站查看
    9. 吴伟,王宁,王元元,孙赫男. 多特征融合的无人船视觉目标跟踪. 大连海事大学学报. 2023(04): 37-45+56 .

    Other cited types(2)

Catalog

    Article views (787) PDF downloads (118) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return