ZHANG J, LIU Y, LI T Y, et al. Maintenance strategy analysis of fatigue-sensitive structure under service life extension uncertainty[J]. Chinese Journal of Ship Research, 2023, 18(4): 233–241. DOI: 10.19693/j.issn.1673-3185.02786
Citation: ZHANG J, LIU Y, LI T Y, et al. Maintenance strategy analysis of fatigue-sensitive structure under service life extension uncertainty[J]. Chinese Journal of Ship Research, 2023, 18(4): 233–241. DOI: 10.19693/j.issn.1673-3185.02786

Maintenance strategy analysis of fatigue-sensitive structure under service life extension uncertainty

More Information
  • Received Date: January 26, 2022
  • Revised Date: April 21, 2022
  • Available Online: April 23, 2022
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to reduce the influence of ship service life extension uncertainty and fatigue risk during future service life extension, a dynamic maintenance sequence decision based on the real option analysis method is adopted.
      Methods  The local fatigue of a high-speed ship is taken as an example. This strategy strengthens the maintenance in the early stages of the ship's service and determines the adaptive maintenance decision according to the requirements of service life extension in the later stages, thereby adapting to the various possibilities of service life extension in the future.
      Results  Compared with the traditional maintenance strategy, the flexible decision under real option analysis can reduce the influence of service life extension uncertainty and effectively reduce failure risk during service life extension.
      Conclusions  The sequential decision made via the real option analysis method has strong adaptability to the uncertainty of service life extension in the future and provides a new idea for maintenance decisions.
  • [1]
    吴梵, 滑林. 腐蚀、疲劳损伤下船体结构可靠性研究现状与展望[J]. 中国舰船研究, 2017, 12(5): 52–63. doi: 10.3969/j.issn.1673-3185.2017.05.007

    WU F, HUA L. Current status and prospects of reliability analysis of hull structures under corrosion and fatigue damage[J]. Chinese Journal of Ship Research, 2017, 12(5): 52–63 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.05.007
    [2]
    牟子方, 魏汝祥. 基于维修规划的舰船船体腐蚀防护经济性分析[J]. 中国舰船研究, 2016, 11(3): 122–127. doi: 10.3969/j.issn.1673-3185.2016.03.020

    MU Z F, WEI R X. Cost effectiveness assessment of ship hull corrosion protection based on the maintenance plan[J]. Chinese Journal of Ship Research, 2016, 11(3): 122–127 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.020
    [3]
    LIU L, YANG D Y, FRANGOPOL D M. Probabilistic cost-benefit analysis for service life extension of ships[J]. Ocean Engineering, 2020, 201: 107094. doi: 10.1016/j.oceaneng.2020.107094
    [4]
    ABS. Review of current practices of fracture repair procedures for ship structures. Report SSC-462.2012[R]. [S.1.]: Ship Structure Committee, 2012.
    [5]
    徐辉, 高畅. 老龄海洋平台的结构延寿评估[J]. 中国海洋平台, 2018, 33(1): 5–8, 16.

    XU H, GAO C. Life extension assessment of structure for aged offshore platform[J]. China Offshore Platform, 2018, 33(1): 5–8, 16 (in Chinese).
    [6]
    陈曙梅, 迟少艳, 黄鎏炜. FPSO延寿疲劳评估和疲劳寿命改善设计[J]. 船舶工程, 2019, 41(10): 33–39, 45.

    CHEN S M, CHI S Y, HUANG L W. Extension fatigue assessment and fatigue life improvement for FPSO[J]. Ship Engineering, 2019, 41(10): 33–39, 45 (in Chinese).
    [7]
    SOLIMAN M, FRANGOPOL D M, MONDORO A. A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details[J]. Structural Safety, 2016, 60: 91–101. doi: 10.1016/j.strusafe.2015.12.004
    [8]
    GARBATOV Y, SOARES C G. Cost and reliability based strategies for fatigue maintenance planning of floating structures[J]. Reliability Engineering & System Safety, 2001, 73(3): 293–301.
    [9]
    YANG D Y, FRANGOPOL D M. Evidence-based framework for real-time life-cycle management of fatigue-critical details of structures[J]. Structure and Infrastructure Engineering, 2018, 14(5): 509–522. doi: 10.1080/15732479.2017.1399150
    [10]
    程俭达, 刘炎, 李天匀, 等. 强化学习模式下舰船多状态退化系统的维修策略研究[J]. 中国舰船研究, 2021, 16(6): 45–51. doi: 10.19693/j.issn.1673-3185.02129

    CHENG J D, LIU Y, LI T Y, et al. Maintenance strategy of ship multi-state deterioration system under reinforcement learning mode[J]. Chinese Journal of Ship Research, 2021, 16(6): 45–51 (in Chinese). doi: 10.19693/j.issn.1673-3185.02129
    [11]
    MANDELBAUM M, BUZACOTT J. Flexibility and decision making[J]. European Journal of Operational Research, 1990, 44(1): 17–27. doi: 10.1016/0377-2217(90)90310-8
    [12]
    KIM S, FRANGOPOL D M, SOLIMAN M. Generalized probabilistic framework for optimum inspection and maintenance planning[J]. Journal of Structural Engineering, 2013, 139(3): 435–447. doi: 10.1061/(ASCE)ST.1943-541X.0000676
    [13]
    BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637–654. doi: 10.1086/260062
    [14]
    KNIGHT J T, COLLETTE M D, SINGER D J. Design for flexibility: evaluating the option to extend service life in preliminary structural design[J]. Ocean Engineering, 2015, 96: 68–78. doi: 10.1016/j.oceaneng.2014.12.035
    [15]
    HINO M, HALL J W. Real options analysis of adaptation to changing flood risk: structural and nonstructural measures[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering, 2017, 3(3): 04017005. doi: 10.1061/AJRUA6.0000905
    [16]
    GERSONIUS B, ASHLEY R, PATHIRAUA A, et al. Climate change uncertainty: building flexibility into water and flood risk infrastructure[J]. Climatic Change, 2013, 116(2): 411–423. doi: 10.1007/s10584-012-0494-5
    [17]
    ZHANG J, LIU Y, LU Y W, et al. Real-option analysis of optimum maintenance of deteriorating structures[C]//Proceedings of the 7th International Symposium on Life-Cycle Civil Engineering (IALCCE). Shanghai,China: CRC Press, 2021.
    [18]
    ZULUAGA S, SÁNCHEZ-SILVA M. The value of flexibility and sequential decision-making in maintenance strategies of infrastructure systems[J]. Structural Safety, 2020, 84: 101916. doi: 10.1016/j.strusafe.2019.101916
    [19]
    PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85(4): 528–533.
    [20]
    AKPAN U O, KOKO T S, AYYUB B, et al. Risk assessment of aging ship hull structures in the presence of corrosion and fatigue[J]. Marine Structures, 2002, 15(3): 211–231. doi: 10.1016/S0951-8339(01)00030-2
    [21]
    ZOU G, GONZÁLEZ A, BANISOLEIMAN K, et al. An integrated probabilistic approach for optimum maintenance of fatigue-critical structural components[J]. Marine Structures, 2019, 68: 102649. doi: 10.1016/j.marstruc.2019.102649
    [22]
    LIU Y, FRANGOPOL D M. Optimal maintenance of naval vessels considering service life uncertainty[C]//Proceedings of the 36th IMAC. Model Validation and Uncertainty Quantification. Cham: Springer, 2018.
    [23]
    ABS. Guide for the fatigue assessment of offshore structures[S]. 2003.
    [24]
    SOLIMAN S M, FRANGOPOL D M. Life-cycle management of fatigue-sensitive structures integrating inspection information[J]. Journal of Infrastructure Systems, 2014, 20(2): 04014001. doi: 10.1061/(ASCE)IS.1943-555X.0000169

Catalog

    Article views (334) PDF downloads (53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return