Citation: | ZHANG J, LIU Y, LI T Y, et al. Maintenance strategy analysis of fatigue-sensitive structure under service life extension uncertainty[J]. Chinese Journal of Ship Research, 2023, 18(4): 233–241. DOI: 10.19693/j.issn.1673-3185.02786 |
[1] |
吴梵, 滑林. 腐蚀、疲劳损伤下船体结构可靠性研究现状与展望[J]. 中国舰船研究, 2017, 12(5): 52–63. doi: 10.3969/j.issn.1673-3185.2017.05.007
WU F, HUA L. Current status and prospects of reliability analysis of hull structures under corrosion and fatigue damage[J]. Chinese Journal of Ship Research, 2017, 12(5): 52–63 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.05.007
|
[2] |
牟子方, 魏汝祥. 基于维修规划的舰船船体腐蚀防护经济性分析[J]. 中国舰船研究, 2016, 11(3): 122–127. doi: 10.3969/j.issn.1673-3185.2016.03.020
MU Z F, WEI R X. Cost effectiveness assessment of ship hull corrosion protection based on the maintenance plan[J]. Chinese Journal of Ship Research, 2016, 11(3): 122–127 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.020
|
[3] |
LIU L, YANG D Y, FRANGOPOL D M. Probabilistic cost-benefit analysis for service life extension of ships[J]. Ocean Engineering, 2020, 201: 107094. doi: 10.1016/j.oceaneng.2020.107094
|
[4] |
ABS. Review of current practices of fracture repair procedures for ship structures. Report SSC-462.2012[R]. [S.1.]: Ship Structure Committee, 2012.
|
[5] |
徐辉, 高畅. 老龄海洋平台的结构延寿评估[J]. 中国海洋平台, 2018, 33(1): 5–8, 16.
XU H, GAO C. Life extension assessment of structure for aged offshore platform[J]. China Offshore Platform, 2018, 33(1): 5–8, 16 (in Chinese).
|
[6] |
陈曙梅, 迟少艳, 黄鎏炜. FPSO延寿疲劳评估和疲劳寿命改善设计[J]. 船舶工程, 2019, 41(10): 33–39, 45.
CHEN S M, CHI S Y, HUANG L W. Extension fatigue assessment and fatigue life improvement for FPSO[J]. Ship Engineering, 2019, 41(10): 33–39, 45 (in Chinese).
|
[7] |
SOLIMAN M, FRANGOPOL D M, MONDORO A. A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details[J]. Structural Safety, 2016, 60: 91–101. doi: 10.1016/j.strusafe.2015.12.004
|
[8] |
GARBATOV Y, SOARES C G. Cost and reliability based strategies for fatigue maintenance planning of floating structures[J]. Reliability Engineering & System Safety, 2001, 73(3): 293–301.
|
[9] |
YANG D Y, FRANGOPOL D M. Evidence-based framework for real-time life-cycle management of fatigue-critical details of structures[J]. Structure and Infrastructure Engineering, 2018, 14(5): 509–522. doi: 10.1080/15732479.2017.1399150
|
[10] |
程俭达, 刘炎, 李天匀, 等. 强化学习模式下舰船多状态退化系统的维修策略研究[J]. 中国舰船研究, 2021, 16(6): 45–51. doi: 10.19693/j.issn.1673-3185.02129
CHENG J D, LIU Y, LI T Y, et al. Maintenance strategy of ship multi-state deterioration system under reinforcement learning mode[J]. Chinese Journal of Ship Research, 2021, 16(6): 45–51 (in Chinese). doi: 10.19693/j.issn.1673-3185.02129
|
[11] |
MANDELBAUM M, BUZACOTT J. Flexibility and decision making[J]. European Journal of Operational Research, 1990, 44(1): 17–27. doi: 10.1016/0377-2217(90)90310-8
|
[12] |
KIM S, FRANGOPOL D M, SOLIMAN M. Generalized probabilistic framework for optimum inspection and maintenance planning[J]. Journal of Structural Engineering, 2013, 139(3): 435–447. doi: 10.1061/(ASCE)ST.1943-541X.0000676
|
[13] |
BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637–654. doi: 10.1086/260062
|
[14] |
KNIGHT J T, COLLETTE M D, SINGER D J. Design for flexibility: evaluating the option to extend service life in preliminary structural design[J]. Ocean Engineering, 2015, 96: 68–78. doi: 10.1016/j.oceaneng.2014.12.035
|
[15] |
HINO M, HALL J W. Real options analysis of adaptation to changing flood risk: structural and nonstructural measures[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering, 2017, 3(3): 04017005. doi: 10.1061/AJRUA6.0000905
|
[16] |
GERSONIUS B, ASHLEY R, PATHIRAUA A, et al. Climate change uncertainty: building flexibility into water and flood risk infrastructure[J]. Climatic Change, 2013, 116(2): 411–423. doi: 10.1007/s10584-012-0494-5
|
[17] |
ZHANG J, LIU Y, LU Y W, et al. Real-option analysis of optimum maintenance of deteriorating structures[C]//Proceedings of the 7th International Symposium on Life-Cycle Civil Engineering (IALCCE). Shanghai,China: CRC Press, 2021.
|
[18] |
ZULUAGA S, SÁNCHEZ-SILVA M. The value of flexibility and sequential decision-making in maintenance strategies of infrastructure systems[J]. Structural Safety, 2020, 84: 101916. doi: 10.1016/j.strusafe.2019.101916
|
[19] |
PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85(4): 528–533.
|
[20] |
AKPAN U O, KOKO T S, AYYUB B, et al. Risk assessment of aging ship hull structures in the presence of corrosion and fatigue[J]. Marine Structures, 2002, 15(3): 211–231. doi: 10.1016/S0951-8339(01)00030-2
|
[21] |
ZOU G, GONZÁLEZ A, BANISOLEIMAN K, et al. An integrated probabilistic approach for optimum maintenance of fatigue-critical structural components[J]. Marine Structures, 2019, 68: 102649. doi: 10.1016/j.marstruc.2019.102649
|
[22] |
LIU Y, FRANGOPOL D M. Optimal maintenance of naval vessels considering service life uncertainty[C]//Proceedings of the 36th IMAC. Model Validation and Uncertainty Quantification. Cham: Springer, 2018.
|
[23] |
ABS. Guide for the fatigue assessment of offshore structures[S]. 2003.
|
[24] |
SOLIMAN S M, FRANGOPOL D M. Life-cycle management of fatigue-sensitive structures integrating inspection information[J]. Journal of Infrastructure Systems, 2014, 20(2): 04014001. doi: 10.1061/(ASCE)IS.1943-555X.0000169
|