Citation: | Yu Y, Wang J N, Huang K, et al. Long-span composite hangar door design and equivalent test of nuclear explosion impact[J]. Chinese Journal of Ship Research, 2022, 18(X): 1–7. DOI: 10.19693/j.issn.1673-3185.02746 |
[1] |
孙卫红, 晏欣, 李永清. 高分子材料在舰船与海洋工程领域中研究进展[J]. 现代塑料加工应用, 2012, 24(3): 61–63.
SUN W H, YAN X, LI Y Q. Development progress of polymer materials in ships and marine engineering area[J]. Modern Plastics Processing and Applications, 2012, 24(3): 61–63 (in Chinese).
|
[2] |
罗白璐, 朱英富. 船用钢/复合材料接头疲劳损伤与承载性能试验研究[J]. 中国造船, 2020, 61(4): 70–76.
LUO B L, ZHU Y F. Experimental study on residual capacity of marine steel/composite joint after fatigue damage[J]. Shipbuilding of China, 2020, 61(4): 70–76 (in Chinese).
|
[3] |
梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2): 1–8. doi: 10.19693/j.issn.1673-3185.02098
MEI Z Y. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research, 2021, 16(2): 1–8 (in Chinese). doi: 10.19693/j.issn.1673-3185.02098
|
[4] |
刘玉超. 船舶复合材料上层建筑结构设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
LIU Y C. Investigation on structural design of ship composite superstructure[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
|
[5] |
王喆, 孙丰, 周姝, 等. 核爆作用下舰船上层建筑结构动力响应[J]. 舰船科学技术, 2013, 35(11): 4–9.
WANG Z, SUN F, ZHOU S, et al. Dynamic response research of warship superstructure under nuclear blast[J]. Ship Science and Technology, 2013, 35(11): 4–9 (in Chinese).
|
[6] |
杨光, 周鹏, 郭鹏飞, 等. 复合材料上层建筑板架抗核爆结构的仿真优化设计[J]. 现代应用物理, 2019, 10(2): 021001. doi: 10.12061/j.issn.2095-6223.2019.021001
YANG G, ZHOU P, GUO P F, et al. Anti-nuclear explosion performance simulation and optimum design of composite superstructure plate[J]. Modern Applied Physics, 2019, 10(2): 021001 (in Chinese). doi: 10.12061/j.issn.2095-6223.2019.021001
|
[7] |
柯力. 钢质夹层板上层建筑结构防护性能优化及抗爆试验研究[D]. 镇江: 江苏科技大学, 2020.
KE L. Optimization of protective performance and experimental study on impact resistance of corrugated steel sandwich panels applied to superstructure[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020 (in Chinese).
|
[8] |
袁丙方. 核爆载荷作用下舰船结构损伤分析研究[D]. 大连: 大连海事大学, 2015.
YUAN B F. The analysis and research of warship structure damage under nuclear blast load[D]. Dalian: Dalian Maritime University, 2015 (in Chinese).
|
[9] |
国防科学技术工业委员会. 舰船环境条件要求 机械环境: GJB 1060.1-91[S]. 北京: 中国标准出版社, 1991.
COSTIND. General requirement for environmental conditions of naval ships mechanical environments: GJB 1060.1-91[S]. Beijing: Standards Press of China, 1991 (in Chinese).
|
[10] |
朱锡, 徐顺棋, 朱晓军, 等. 纤维增强塑料与金属件的连接结构: CN, 2395979[P]. 2000-09-13.
ZHU X, XU S Q, ZHU X J, et al. Connection structure between fiber reinforced plastic and metal parts: CN, 2395979[P]. 2000-09-13 (in Chinese).
|
[11] |
国防科学技术工业委员会. 核爆环境中舰艇毁伤等级的划分: GJB 352-1987[S]. 北京: 中国标准出版社, 1987.
COSTIND. Classification of damaged ship levels in environment of nuclear explosion: GJB 352-1987[S]. Beijing: Standards Press of China, 1987 (in Chinese).
|
[12] |
胡八一, 张亚军, 谷岩, 等. 40 kg TNT当量爆炸塔的等效静载荷计算[J]. 特种结构, 2011, 28(6): 9–11.
HU B Y, ZHANG Y J, GU Y, et al. Calculation of equivalent static load of 40 kg TNT equivalent explosion tower[J]. Special Structures, 2011, 28(6): 9–11 (in Chinese).
|
[13] |
耿少波, 葛培杰, 李洪, 等. 爆炸荷载结构等效静载动力系数研究[J]. 兵工学报, 2019, 40(10): 2088–2095.
GENG S B, GE P J, LI H, et al. Equivalent static load dynamic coefficient for blast load[J]. Acta Armamentarii, 2019, 40(10): 2088–2095 (in Chinese).
|