Citation: | ZHU Y H, LIU Z Q, GAO D J. Robust adaptive rudder roll stabilization control based on neural network[J]. Chinese Journal of Ship Research, 2023, 18(3): 86–93, 103. DOI: 10.19693/j.issn.1673-3185.02699 |
[1] |
PEREZ T, BLANKE M. Ship roll damping control[J]. Annual Reviews in Control, 2012, 36(1): 129–147. doi: 10.1016/j.arcontrol.2012.03.010
|
[2] |
王世凯, 金鸿章. 非线性非最小相位船舶舵减摇系统的滑模控制[J]. 计算机工程与应用, 2018, 54(9): 207–212.
WANG S K, JIN H Z. Nonlinear non-minimum phase rudder-roll damping systems of ship using sliding mode control[J]. Computer Engineering and Applications, 2018, 54(9): 207–212 (in Chinese).
|
[3] |
刘志全, 金鸿章. 基于航速保持的舵减摇控制方法[J]. 中国舰船研究, 2017, 12(1): 128–133. doi: 10.3969/j.issn.1673-3185.2017.01.019
LIU Z Q, JIN H Z. Method for rudder roll stabilization control by maintaining ship speed[J]. Chinese Journal of Ship Research, 2017, 12(1): 128–133 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.019
|
[4] |
张文颖, 彭秀艳. 基于T-S模糊模型的船舶舵减横摇H∞状态反馈控制[J]. 船舶工程, 2013, 35(5): 51–54.
ZHANG W Y, PENG X Y. H∞ state-feedback control for ship rudder roll damping system based on T-S fuzzy model[J]. Ship Engineering, 2013, 35(5): 51–54 (in Chinese).
|
[5] |
张文颖, 唐立志, 张勋. 基于模糊T-S模型的舵减摇系统的观测器设计[J]. 控制工程, 2015, 22(2): 227–231.
ZHANG W Y, TANG L Z, ZHANG X. Observer design for the RRD system based on the T-S fuzzy model[J]. Control Engineering of China, 2015, 22(2): 227–231 (in Chinese).
|
[6] |
李晖, 解莹楠, 兰立奇. 基于反馈线性化的船舶舵鳍联合减摇MPC控制[J]. 系统仿真学报, 2020, 32(9): 1753–1761.
LI H, XIE Y N, LAN L Q. Ship's rudder/fin joint anti-rolling MPC control based on feedback linearization[J]. Journal of System Simulation, 2020, 32(9): 1753–1761 (in Chinese).
|
[7] |
LIANG L H, WEN Y. Rudder roll stabilization with disturbance compensation model predictive control[J]. Journal of Marine Science and Technology, 2019, 24(1): 249–259. doi: 10.1007/s00773-018-0550-6
|
[8] |
LIU C, WANG D Y, ZHANG Y X, et al. Model predictive control for path following and roll stabilization of marine vessels based on neurodynamic optimization[J]. Ocean Engineering, 2020, 217: 107524. doi: 10.1016/j.oceaneng.2020.107524
|
[9] |
刘玥, 刘方, 陈功. 基于模糊滑模理论的水面航行器减摇控制[J]. 船舶工程, 2021, 43(3): 96–99,135.
LIU Y, LIU F, CHEN G. Surface vehicle roll damping control based on fuzzy-sliding mode theory[J]. Ship Engineering, 2021, 43(3): 96–99,135 (in Chinese).
|
[10] |
ZHAO P, LIANG L H, ZHANG S T, et al. Simulation analysis of rudder roll stabilization during ship turning motion[J]. Ocean Engineering, 2019, 189: 106322. doi: 10.1016/j.oceaneng.2019.106322
|
[11] |
LIU J K, SUN F C. A novel dynamic terminal sliding mode control of uncertain nonlinear systems[J]. Journal of Control Theory and Applications, 2007, 5(2): 189–193. doi: 10.1007/s11768-005-5275-5
|
[12] |
MOBAYEN S. Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties[J]. Complexity, 2015, 21(2): 239–244. doi: 10.1002/cplx.21600
|
[13] |
YU X H, MAN Z H. Fast terminal sliding-mode control design for nonlinear dynamical systems[J]. IEEE Trans-actions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 261–264. doi: 10.1109/81.983876
|
[14] |
穆朝絮, 余星火, 孙长银. 非奇异终端滑模控制系统相轨迹和暂态分析[J]. 自动化学报, 2013, 39(6): 902–908.
MU C X, YU X H, SUN C Y. Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems[J]. Acta Automatica Sinica, 2013, 39(6): 902–908 (in Chinese).
|
[15] |
VAN M, GE S S, REN H L. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control[J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1681–1693. doi: 10.1109/TCYB.2016.2555307
|
[16] |
吴爱国, 刘海亭, 董娜. 机械臂神经网络非奇异快速终端滑模控制[J]. 农业机械学报, 2018, 49(2): 395–404, 240.
WU A G, LIU H T, DONG N. Nonsingular fast terminal sliding mode control of robotic manipulators based on neural networks[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 395–404, 240 (in Chinese).
|
[17] |
QIU B B, WANG G F, FAN Y S, et al. Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation[J]. Applied Sciences, 2019, 9(6): 1240. doi: 10.3390/app9061240
|
[18] |
贺宏伟, 邹早建, 曾智华. 欠驱动水面船舶的自适应神经网络−滑模路径跟随控制[J]. 上海交通大学学报, 2020, 54(9): 890–897.
HE H W, ZOU Z J, ZENG Z H. Adaptive NN-SM control for path following of underactuated surface vessels[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 890–897 (in Chinese).
|
[19] |
PEREZ T. Ship motion control: course keeping and roll stabilization using rudder and fins[M]. London: Springer, 2005.
|
[20] |
YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systerms[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865–1879. doi: 10.1002/rnc.1666
|
[21] |
ZHANG X L, HUANG Y, RONG Y M, et al. Recurrent neural network based optimal integral sliding mode tracking control for four-wheel independently driven robots[J]. IET Control Theory & Applications, 2021, 15(10): 1346–1363.
|
[22] |
FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: John Wiley & Sons Inc, 1994.
|
[1] | LIU Jiahao, LIU Zhiquan. Finite-time filtered backstepping sliding mode adaptive control for rudder roll stabilization[J]. Chinese Journal of Ship Research, 2023, 18(6): 97-105. DOI: 10.19693/j.issn.1673-3185.03137 |
[2] | JIAO Yuhang, WANG Ning. Finite-time trajectory tracking control of underactuated surface vehicles swarm[J]. Chinese Journal of Ship Research, 2023, 18(6): 76-87. DOI: 10.19693/j.issn.1673-3185.02958 |
[3] | QIN Yifeng, LIU Zhiquan. Rudder roll stabilization with robust predictive control based on fuzzy rules[J]. Chinese Journal of Ship Research, 2023, 18(4): 206-214. DOI: 10.19693/j.issn.1673-3185.02822 |
[4] | NING Jun, CHEN Hanmin, LI Wei, WANG Qifu, LI Tieshan, CHEN Junlong. Finite-time ship formation control based on extended state observer[J]. Chinese Journal of Ship Research, 2023, 18(1): 60-66. DOI: 10.19693/j.issn.1673-3185.02438 |
[5] | WAN Lei, ZHANG Dongliang, SUN Yanchao, QIN Hongde, CAO Yu. Fuzzy sliding mode control method for vertical motion of autonomous underwater gliders[J]. Chinese Journal of Ship Research, 2022, 17(5): 148-156. DOI: 10.19693/j.issn.1673-3185.02521 |
[6] | ZHANG Qiang, ZHU Yaping, MENG Xiangfei, ZHANG Shuhao, HU Yancai. Finite time trajectory tracking of underactuated ship based on adaptive neural network[J]. Chinese Journal of Ship Research, 2022, 17(4): 24-31. DOI: 10.19693/j.issn.1673-3185.02564 |
[7] | CHEN Haohua, ZHAO Hong, WANG Ning, GUO Chen, LU Ting, WANG Ning. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108. DOI: 10.19693/j.issn.1673-3185.02236 |
[8] | CHU Ruiting, LIU Zhiquan. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71-79. DOI: 10.19693/j.issn.1673-3185.02267 |
[9] | YU Lingling, WANG Xin, LI Li, HUANG Wei, FU Mingyu. Finite-time control method for distributed formation of ships based on finite-time observer[J]. Chinese Journal of Ship Research, 2020, 15(3): 8-17, 37. DOI: 10.19693/j.issn.1673-3185.01708 |
[10] | He Dongxu, Ge Lei, Zhang Xin, Zang Xinle. Analysis on convergence time of gyrocompass azimuth alignment[J]. Chinese Journal of Ship Research, 2019, 14(5): 159-166. DOI: 10.19693/j.issn.1673-3185.01522 |
1. |
田宇,刘志全,高妍南. 基于神经网络滑模的欠驱动船舶路径跟踪与避障协同控制. 广东海洋大学学报. 2024(05): 144-152 .
![]() | |
2. |
夏云青. Lyapunov稳定性分析在欠驱动船舶路径跟踪的应用. 舰船科学技术. 2023(16): 137-140 .
![]() | |
3. |
刘嘉昊,刘志全. 有限时间滤波反步滑模自适应舵减摇控制. 中国舰船研究. 2023(06): 97-105 .
![]() |