GUO S Z, MA J, LI Z Y, et al. Design and swimming test of myliobatid-inspired robot[J]. Chinese Journal of Ship Research, 2022, 17(4): 139–144. DOI: 10.19693/j.issn.1673-3185.02497
Citation: GUO S Z, MA J, LI Z Y, et al. Design and swimming test of myliobatid-inspired robot[J]. Chinese Journal of Ship Research, 2022, 17(4): 139–144. DOI: 10.19693/j.issn.1673-3185.02497

Design and swimming test of myliobatid-inspired robot

More Information
  • Received Date: August 19, 2021
  • Revised Date: January 10, 2022
  • Available Online: January 16, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Over millions of years of natural selection, fish have evolved various types of swimming modes with various advantages in efficiency, motility and tranquility, making them ideal biological objects on which autonomous underwater vehicles (AUVs) can be modelled. In order to develop a brand new AUV with lower noise and higher mobility, this paper puts forward a design for a myliobatid-inspired robot actuated by pairs of flexible pectoral fins.
      Methods  The manufacturing process and actuating method of the prototype are illustrated in detail. In order to test the maximum speed and mobility of the prototype, a series of swimming tests is carried out.
      Results  The experimental results show that the prototype can complete a variety of maneuvers in water, including rolling, small radius steering and hovering, and its maximum swimming speed can reach 1.9 body lengths per second (about 0.73 m/s).
      Conclusions  This paper outlines the preliminary design and swimming test of a myliobatid-inspired robot, giving it reference value as an indicator for the next generation of AUVs.
  • [1]
    章永华. 柔性仿生波动鳍推进理论与实验研究[D]. 合肥: 中国科学技术大学, 2008.

    ZHANG Y H. Theoretic and experimental research on propulsion flexible biomimetic undulatory robotic fin[D]. Hefei: University of Science and Technology of China, 2008 (in Chinese).
    [2]
    BANDYOPADHYAY P R. Trends in biorobotic autonomous undersea vehicles[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 109–139. doi: 10.1109/JOE.2005.843748
    [3]
    XU Y C, ZONG G H, BI S S, et al. Initial development of a flapping propelled unmanned underwater vehicle (UUV)[C]//2007 International Conference on Robotics and Biomimetics. Sanya: IEEE, 2008.
    [4]
    GAO J, BI S S, XU Y C, et al. Development and design of a robotic manta ray featuring flexible pectoral fins[C]//2007 IEEE International Conference on Robotics and Biomimetics. Sanya: IEEE, 2008.
    [5]
    ARASTEHFAR S, GUNAWAN G, YEO K S, et al. Effects of pectoral fins' spanwise flexibility on forward thrust generation[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau, Macao: IEEE, 2017.
    [6]
    CHEW C M, LIM Q Y, YEO K S. Development of propulsion mechanism for Robot Manta Ray[C]//2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai: IEEE, 2016.
    [7]
    KIM H S, LEE J Y, CHU W S, et al. Design and fabrication of soft morphing ray propulsor: undulator and oscillator[J]. Soft Robotics, 2017, 4(1): 49–60. doi: 10.1089/soro.2016.0033
    [8]
    MOORED K W, FISH F E, KEMP T H, et al. Batoid fishes: inspiration for the next generation of underwater robots[J]. Marine Technology Society Journal, 2011, 45(4): 99–109. doi: 10.4031/MTSJ.45.4.10
    [9]
    LAUDER G V, DRUCKER E G. Morphology and experimental hydrodynamics of fish fin control surfaces[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 556–571. doi: 10.1109/JOE.2004.833219
  • Related Articles

    [1]TAN Tong, YU Lin, GUO Kai, WANG Xuyang, QIAO Lei. Design and decoupled motion control study of bio-inspired robotic remora[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04108
    [2]XU Pengfei, LYU Tao, GE Tong, CHENG Hongxia, ZHAO Min. Rolling test and dynamics simulation of spherical underwater vehicle[J]. Chinese Journal of Ship Research, 2022, 17(6): 216-222. DOI: 10.19693/j.issn.1673-3185.02583
    [3]Zhemin HUANG, Zhouji CHENG, Yingkai XIA, Guohua XU, Ben LI, Xingbang PAN. Anti-roll control and maneuverability test of X-rudder autonomous underwater vehicle[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.02395
    [4]Zhang Kang, Wang Lei, Leng Wenjun, Chen Hong. Influence of multi-legged pose of the deep-sea crawling-swimming vehicle on the stability during cruising[J]. Chinese Journal of Ship Research, 2019, 14(5): 90-97. DOI: 10.19693/j.issn.1673-3185.01500
    [5]CHEN Hong, WANG Xinliang, WEI Wei, LIU Zhi, MA Zhesong, Zheng Chao, TANG Pingpeng. Concept and key technology analysis of deep-sea walking-swimming robot[J]. Chinese Journal of Ship Research, 2018, 13(6): 19-26. DOI: 10.19693/j.issn.1673-3185.01241
    [6]XU Zhisheng, GUO Bin, ZHENG Lijie, SHAO Zhiwei. 潜载无人水下航行器自航布放内弹道模型与仿真[J]. Chinese Journal of Ship Research, 2014, 9(1): 111-115. DOI: 10.3969/j.issn.1673-3185.2014.01.016
    [7]LI Guoliang, GUO Yanzi, GUO Bin, XU Zhisheng. 无人水下航行器自航出管可行性浅析[J]. Chinese Journal of Ship Research, 2013, 8(6): 45-49. DOI: 10.3969/j.issn.1673-3185.2013.06.008
    [8]LI Nan, CHEN Fang. 舰船机电产品可靠性验收试验方法[J]. Chinese Journal of Ship Research, 2012, 7(6): 116-119. DOI: 10.3969/j.issn.1673-3185.2012.06.019
    [9]XIAO Wenyong, MENG Fanhua, WAN Peng. 橡胶隔振器动态性能试验改进方法[J]. Chinese Journal of Ship Research, 2012, 7(3): 93-97. DOI: 10.3969/j.issn.1673-3185.2012.03.018
    [10]CHEN Wenzhan. ACM高分子材料水润滑推力轴承性能试验研究[J]. Chinese Journal of Ship Research, 2012, 7(3): 79-83. DOI: 10.3969/j.issn.1673-3185.2012.03.015
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 王文谦,马鹏磊,李广浩,许传新,姚兵,刘贵杰. 仿生机器鱼步态控制及闭环运动控制方法综述. 中国舰船研究. 2024(01): 29-45 . 本站查看
    2. 郭松子,李志印. 展向刚度对拍动式仿生胸鳍水动力性能影响的实验研究. 中国舰船研究. 2024(02): 31-36 . 本站查看
    3. 刘长红,吴博淳,黄锦山,苏杰锋,温嘉文,陈思霖. 基于曲柄摇杆机构的仿生海扁虫水下机器人. 机械设计. 2024(S1): 27-31 .
    4. 包海默,侯舒荣,宋梅萍,胡晓惠,安轩昂. 水下机器人仿生胸鳍设计研究进展. 机械设计. 2023(12): 139-148 .

    Other cited types(2)

Catalog

    Article views (767) PDF downloads (87) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return