Citation: | DU X J, LI P, NI J Z, et al. Analysis of X-band RCS statistical characteristics of ship body in motion state[J]. Chinese Journal of Ship Research, 2023, 18(1): 163–169. DOI: 10.19693/j.issn.1673-3185.02369 |
[1] |
许小剑, 姜丹, 李晓飞. 时变海面舰船目标动态雷达特征信号模型[J]. 系统工程与电子技术, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09
XU X J, JIANG D, LI X F. Modeling of dynamic radar signatures for ships on time-varying sea surface[J]. Systems Engineering and Electronics, 2011, 33(1): 42–47 (in Chinese). doi: 10.3969/j.issn.1001-506X.2011.01.09
|
[2] |
刘佳, 方宁, 谢拥军, 等. 姿态扰动情况下的目标动态RCS分布特性[J]. 系统工程与电子技术, 2015, 37(4): 775–781. doi: 10.3969/j.issn.1001-506X.2015.04.09
LIU J, FANG N, XIE Y J, et al. Dynamic target RCS characteristic analysis under the influence of attitude perturbation[J]. Systems Engineering and Electronics, 2015, 37(4): 775–781 (in Chinese). doi: 10.3969/j.issn.1001-506X.2015.04.09
|
[3] |
KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress in Electromagnetics Research, 2012, 27(2): 11–26.
|
[4] |
张民, 郭立新, 聂丁, 等. 海面目标雷达散射特性与电磁成像[M]. 北京: 科学出版社, 2015.
ZHANG M, GUO L X, NIE D, et al. Radar scattering characteristics and electromagnetic imaging of targets on the sea surface[M]. Beijing: Science Press, 2015 (in Chinese).
|
[5] |
于新源, 许波, 熊坤, 等. 舰船动态散射回波建模与稳定性分析[J]. 现代防御技术, 2017, 45(5): 170–177. doi: 10.3969/j.issn.1009-086x.2017.05.027
YU X Y, XU B, XIONG K, et al. Modeling of dynamic scattering echo of ship and stability analysis[J]. Modern Defense Technology, 2017, 45(5): 170–177 (in Chinese). doi: 10.3969/j.issn.1009-086x.2017.05.027
|
[6] |
黄亚林, 张晨新, 刘凯越, 等. 基于动态RCS的隐身目标检测研究[J]. 微波学报, 2017, 33(1): 58–62. doi: 10.14183/j.cnki.1005-6122.201701013
HUANG Y L, ZHANG C X, LIU K Y, et al. A study on detection of stealth target based on dynamic RCS[J]. Journal of Microwaves, 2017, 33(1): 58–62 (in Chinese). doi: 10.14183/j.cnki.1005-6122.201701013
|
[7] |
NAM B W, KIM N W, HONG S Y, et al. Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 552–567. doi: 10.1016/j.ijnaoe.2017.01.002
|
[8] |
JIAO J L, CHEN C H, REN H L, et al. A comprehensive study on ship motion and load responses in short-crested irregular waves[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 364–379. doi: 10.1016/j.ijnaoe.2018.07.003
|
[9] |
盛振邦, 刘应中. 船舶原理(下)[M]. 上海: 上海交通大学出版社, 2004.
SHENG Z B, LIU Y Z. Principle of ship[M]. Shanghai: Shanghai Jiao Tong University Press, 2004.
|
[10] |
US Navy Combatant, DTMB 5415[EB/OL]. (2008) [2020-12-20]. http://www.simman2008.dk/5415/5415_geometry.htm.
|
[11] |
CHEN X, ZHU R C, ZHAO J, et al. Study on weakly nonlinear motions of ship advancing in waves and influences of steady ship wave[J]. Ocean Engineering, 2018, 150: 243–257. doi: 10.1016/j.oceaneng.2017.12.053
|
[12] |
ZHANG M, ZHAO Y, LI J X, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775–784. doi: 10.1109/TAP.2016.2633066
|
[13] |
ALGAR M J, LOZANO L, MORENO J, et al. An efficient hybrid technique in RCS predictions of complex targets at high frequencies[J]. Journal of Computational Physics, 2017, 345: 345–357. doi: 10.1016/j.jcp.2017.05.035
|