Citation: | LAN X J, ZHAO W W, WAN D C. Numerical simulation of Poiseuille flow based on moving particle semi-implicit method[J]. Chinese Journal of Ship Research, 2022, 17(4): 177–182. DOI: 10.19693/j.issn.1673-3185.02276 |
[1] |
夏国泽. 船舶流体力学[M]. 武汉: 华中科技大学出版社, 2003.
XIA G Z. Ship hydrodynamics[M]. Wuhan: Huazhong University of Science and Technology Press, 2003 (in Chinese).
|
[2] |
FOX A J, LESSEN M, BHAT W V. Experimental investigation of the stability of Hagen-Poiseuille flow[J]. The Physics of Fluids, 1968, 11(1): 1. doi: 10.1063/1.1691740
|
[3] |
PAPANASTASIOU T, GEORGIOU G, ALEXANDROU A R. Viscous fluid flow[M]. Heidelberg, Germany: Springer-Verlag, 1999.
|
[4] |
陈雷, 汤苑楠, 刘刚, 等. 牛顿流体圆管内非稳态Poiseuille流动特性[J]. 中国石油大学学报(自然科学版), 2018, 42(3): 114–121.
CHEN L, TANG Y N, LIU G, et al. Characteristics of unsteady Poiseuille flow of Newtonian fluid in circular pipe[J]. Journal of China University of Petroleum, 2018, 42(3): 114–121 (in Chinese).
|
[5] |
金开文, 张国雄, 胡平, 等. 基于格子Boltzmann方法的泊肃叶流数值研究[J]. 工业炉, 2015, 37(4): 1–5. doi: 10.3969/j.issn.1001-6988.2015.04.001
JIN K W, ZHANG G X, HU P, et al. Numerical investigation of Poiseuille flow based on lattice Boltzmann method[J]. Industrial Furnace, 2015, 37(4): 1–5 (in Chinese). doi: 10.3969/j.issn.1001-6988.2015.04.001
|
[6] |
ADAMI S, HU X Y, ADAMS N A. A generalized wall boundary condition for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2012, 231(21): 7057–7075. doi: 10.1016/j.jcp.2012.05.005
|
[7] |
MEISTER M, BURGER G, RAUCH W. On the Reynolds number sensitivity of smoothed particle hydrodynamics[J]. Journal of Hydraulic Research, 2014, 52(6): 824–835. doi: 10.1080/00221686.2014.932855
|
[8] |
刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析[J]. 物理学报, 2010, 59(6): 3654–3662. doi: 10.7498/aps.59.3654
LIU M B, CHANG J Z. Particle distribution and numerical stability in smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2010, 59(6): 3654–3662 (in Chinese). doi: 10.7498/aps.59.3654
|
[9] |
SONG B F, PAZOUKI A T, PÖSCHEL T. Instability of smoothed particle hydrodynamics applied to Poiseuille flows[J]. Computers & Mathematics with Applications, 2018, 76(6): 1447–1457.
|
[10] |
KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421–434. doi: 10.13182/NSE96-A24205
|
[11] |
ZHANG G Y, CHEN X, WAN D C. MPS-FEM coupled method for study of wave-structure interaction[J]. Journal of Marine Science and Application, 2019, 18(4): 387–399. doi: 10.1007/s11804-019-00105-6
|
[12] |
XIE F Z, ZHAO W W, WAN D C. CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU[J]. Journal of Hydrodynamics, 2020, 32(4): 672–683. doi: 10.1007/s42241-020-0039-8
|
[13] |
WEN X, WAN D C. Numerical simulation of Rayleigh–Taylor instability by multiphase MPS method[J]. International Journal of Computational Methods, 2019, 16(2): 1846005. doi: 10.1142/S0219876218460052
|
[14] |
勾文进, 陈明慧, 张帅, 等. 基于移动粒子半隐式方法的旋流液膜破碎过程模拟[J]. 推进技术, 2020, 41(7): 1529–1535. doi: 10.13675/j.cnki.tjjs.190404
GOU W J, CHEN M H, ZHANG S, et al. Simulation on swirl liquid sheet breakup process based on moving particle semi-implicit method[J]. Journal of Propulsion Technology, 2020, 41(7): 1529–1535 (in Chinese). doi: 10.13675/j.cnki.tjjs.190404
|
[15] |
张雨新. 改进的MPS方法及其三维并行计算研究[D]. 上海: 上海交通大学, 2014.
ZHANG Y X. Improved MPS method and its 3D parallel computation[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
|
[16] |
姚熊亮, 于秀波, 张阿漫, 等. 基于SPH方法的水下爆炸初始爆轰过程研究[J]. 中国舰船研究, 2008, 3(2): 7–10. doi: 10.3969/j.issn.1673-3185.2008.02.003
YAO X L, YU X B, ZHANG A M, et al. Study on initial detonation process of underwater explosion using smoothed particle hydrodynamics method[J]. Chinese Journal of Ship Research, 2008, 3(2): 7–10 (in Chinese). doi: 10.3969/j.issn.1673-3185.2008.02.003
|
[17] |
LEE B H, PARK J C, KIM M H, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 200(9/10): 1113–1125.
|