LAN X J, ZHAO W W, WAN D C. Numerical simulation of Poiseuille flow based on moving particle semi-implicit method[J]. Chinese Journal of Ship Research, 2022, 17(4): 177–182. DOI: 10.19693/j.issn.1673-3185.02276
Citation: LAN X J, ZHAO W W, WAN D C. Numerical simulation of Poiseuille flow based on moving particle semi-implicit method[J]. Chinese Journal of Ship Research, 2022, 17(4): 177–182. DOI: 10.19693/j.issn.1673-3185.02276

Numerical simulation of Poiseuille flow based on moving particle semi-implicit method

More Information
  • Received Date: January 20, 2021
  • Revised Date: July 10, 2021
  • Available Online: July 19, 2021
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Poiseuille flow widely exists in the industry, but the stability and reliability of the moving particle semi-implicit (MPS) method in the simulation of wall shear flow such as Poiseuille flow need to be verified.
      Methods  The meshless solver MLParticle-SJTU, which was developed independently based on the MPS method, is used to simulate Poiseuille flow in 2D pipes under different Reynolds numbers by establishing the inflow boundary and no-slip wall boundary, and the fluid is an incompressible Newtonian fluid. The numerical simulation results and theoretical results are then compared to verify the accuracy of the former.
      Results  The results show that the velocity profile of Poiseuille flow is parabolic when the flow is fully developed, and the error of the numerical simulation results is within 5% compared with the theoretical results under different Reynolds numbers.
      Conclusion  This study shows that the MPS method is effective and reliable for simulating 2D Poiseuille flow under the boundary conditions proposed in this paper.
  • [1]
    夏国泽. 船舶流体力学[M]. 武汉: 华中科技大学出版社, 2003.

    XIA G Z. Ship hydrodynamics[M]. Wuhan: Huazhong University of Science and Technology Press, 2003 (in Chinese).
    [2]
    FOX A J, LESSEN M, BHAT W V. Experimental investigation of the stability of Hagen-Poiseuille flow[J]. The Physics of Fluids, 1968, 11(1): 1. doi: 10.1063/1.1691740
    [3]
    PAPANASTASIOU T, GEORGIOU G, ALEXANDROU A R. Viscous fluid flow[M]. Heidelberg, Germany: Springer-Verlag, 1999.
    [4]
    陈雷, 汤苑楠, 刘刚, 等. 牛顿流体圆管内非稳态Poiseuille流动特性[J]. 中国石油大学学报(自然科学版), 2018, 42(3): 114–121.

    CHEN L, TANG Y N, LIU G, et al. Characteristics of unsteady Poiseuille flow of Newtonian fluid in circular pipe[J]. Journal of China University of Petroleum, 2018, 42(3): 114–121 (in Chinese).
    [5]
    金开文, 张国雄, 胡平, 等. 基于格子Boltzmann方法的泊肃叶流数值研究[J]. 工业炉, 2015, 37(4): 1–5. doi: 10.3969/j.issn.1001-6988.2015.04.001

    JIN K W, ZHANG G X, HU P, et al. Numerical investigation of Poiseuille flow based on lattice Boltzmann method[J]. Industrial Furnace, 2015, 37(4): 1–5 (in Chinese). doi: 10.3969/j.issn.1001-6988.2015.04.001
    [6]
    ADAMI S, HU X Y, ADAMS N A. A generalized wall boundary condition for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2012, 231(21): 7057–7075. doi: 10.1016/j.jcp.2012.05.005
    [7]
    MEISTER M, BURGER G, RAUCH W. On the Reynolds number sensitivity of smoothed particle hydrodynamics[J]. Journal of Hydraulic Research, 2014, 52(6): 824–835. doi: 10.1080/00221686.2014.932855
    [8]
    刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析[J]. 物理学报, 2010, 59(6): 3654–3662. doi: 10.7498/aps.59.3654

    LIU M B, CHANG J Z. Particle distribution and numerical stability in smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2010, 59(6): 3654–3662 (in Chinese). doi: 10.7498/aps.59.3654
    [9]
    SONG B F, PAZOUKI A T, PÖSCHEL T. Instability of smoothed particle hydrodynamics applied to Poiseuille flows[J]. Computers & Mathematics with Applications, 2018, 76(6): 1447–1457.
    [10]
    KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421–434. doi: 10.13182/NSE96-A24205
    [11]
    ZHANG G Y, CHEN X, WAN D C. MPS-FEM coupled method for study of wave-structure interaction[J]. Journal of Marine Science and Application, 2019, 18(4): 387–399. doi: 10.1007/s11804-019-00105-6
    [12]
    XIE F Z, ZHAO W W, WAN D C. CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU[J]. Journal of Hydrodynamics, 2020, 32(4): 672–683. doi: 10.1007/s42241-020-0039-8
    [13]
    WEN X, WAN D C. Numerical simulation of Rayleigh–Taylor instability by multiphase MPS method[J]. International Journal of Computational Methods, 2019, 16(2): 1846005. doi: 10.1142/S0219876218460052
    [14]
    勾文进, 陈明慧, 张帅, 等. 基于移动粒子半隐式方法的旋流液膜破碎过程模拟[J]. 推进技术, 2020, 41(7): 1529–1535. doi: 10.13675/j.cnki.tjjs.190404

    GOU W J, CHEN M H, ZHANG S, et al. Simulation on swirl liquid sheet breakup process based on moving particle semi-implicit method[J]. Journal of Propulsion Technology, 2020, 41(7): 1529–1535 (in Chinese). doi: 10.13675/j.cnki.tjjs.190404
    [15]
    张雨新. 改进的MPS方法及其三维并行计算研究[D]. 上海: 上海交通大学, 2014.

    ZHANG Y X. Improved MPS method and its 3D parallel computation[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
    [16]
    姚熊亮, 于秀波, 张阿漫, 等. 基于SPH方法的水下爆炸初始爆轰过程研究[J]. 中国舰船研究, 2008, 3(2): 7–10. doi: 10.3969/j.issn.1673-3185.2008.02.003

    YAO X L, YU X B, ZHANG A M, et al. Study on initial detonation process of underwater explosion using smoothed particle hydrodynamics method[J]. Chinese Journal of Ship Research, 2008, 3(2): 7–10 (in Chinese). doi: 10.3969/j.issn.1673-3185.2008.02.003
    [17]
    LEE B H, PARK J C, KIM M H, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 200(9/10): 1113–1125.

Catalog

    Article views (587) PDF downloads (51) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return