Citation: | XIONG F F, CHEN J T, REN C K, et al. Recent advances in polynomial chaos method for uncertainty propagation[J]. Chinese Journal of Ship Research, 2021, 16(4): 19–36. DOI: 10.19693/j.issn.1673-3185.02130 |
[1] |
XIU D B, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619–644. doi: 10.1137/S1064827501387826
|
[2] |
XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137–167. doi: 10.1016/S0021-9991(03)00092-5
|
[3] |
HASOFER A M, LIND N C. Exact and invariant second moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111–121. doi: 10.1061/JMCEA3.0001848
|
[4] |
KÖYLÜOǦLU H U, NIELSEN S R K. New approximations for SORM integrals[J]. Structural Safety, 1994, 13(4): 235–246. doi: 10.1016/0167-4730(94)90031-0
|
[5] |
ZHAO Y G, ONO T. New approximations for SORM: Part 1[J]. Journal of Engineering Mechanics, 1999, 125(1): 79–93. doi: 10.1061/(ASCE)0733-9399(1999)125:1(79)
|
[6] |
刘智益. 不确定性CFD模拟方法及其应用研究[D]. 北京: 华北电力大学, 2014.
LIU Z Y. Investigation on non-deterministic methodologies and applications in CFD simulations[D]. Beijing: North China Electric Power University, 2014 (in Chinese).
|
[7] |
张宏涛, 赵宇飞, 李晨峰, 等. 基于多项式混沌展开的边坡稳定可靠性分析[J]. 岩土工程学报, 2010, 32(8): 1253–1259.
ZHANG H T, ZHAO Y F, LI C F, et al. Reliability analysis of slope stability based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1253–1259 (in Chinese).
|
[8] |
胡晚亭, 吕令毅. 基于谱随机有限元的地基沉降可靠度分析[J]. 工程建设, 2018, 50(4): 11–15.
HU W T, LYU L Y. Reliability analysis of foundation settlement based on spectral stochastic finite element method[J]. Engineering Construction, 2018, 50(4): 11–15 (in Chinese).
|
[9] |
许灿, 朱平, 刘钊, 等. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究[J]. 力学学报, 2020, 52(3): 763–773. doi: 10.6052/0459-1879-20-002
XU C, ZHU P, LIU Z, et al. Research on multiscale stochastic mechanical properties prediction of plain woven carbon fiber composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 763–773 (in Chinese). doi: 10.6052/0459-1879-20-002
|
[10] |
PREMPRANEERACH P, HOVER F S, TRIANTAFYLLOU M S, et al. Uncertainty quantification in simulations of power systems: multi-element polynomial chaos methods[J]. Reliability Engineering & System Safety, 2010, 95(6): 632–646.
|
[11] |
沈艳霞, 卞高峰, 林京京. 基于多项式混沌观测器的电机系统自愈控制[J]. 控制工程, 2018, 25(10): 1785–1790.
SHEN Y X, BIAN G F, LIN J J. Self-healing control for motor system based on polynomial chaos observer[J]. Control Engineering of China, 2018, 25(10): 1785–1790 (in Chinese).
|
[12] |
高印寒, 王天皓, 杨开宇, 等. 基于混沌多项式法的汽车线束串扰统计特性研究[EB/OL]. [2015-11-26]. http://www.paper.edu.cn/releasepaper/content/201511-659.
GAO Y H, WANG T H, YANG K Y, et al. The study of automotive wiring harness crosstalk statistical properties based on chaos polynomial method[EB/OL]. [2015-11-26]. http://www.paper.edu.cn/releasepaper/content/201511-659 (in Chinese).
|
[13] |
TADIPARTHI V, BHATTACHARYA R. Robust LQR for uncertain discrete-time systems using polynomial chaos[C]//2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020: 4472–4477. DOI: 10.23919/ACC45564.2020.9147831.
|
[14] |
BHATTACHARYA R. A polynomial chaos framework for designing linear parameter varying control systems[C]//2015 American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015.
|
[15] |
PENG Y B, GHANEM R, LI J. Polynomial chaos expansions for optimal control of nonlinear random oscillators[J]. Journal of Sound and Vibration, 2010, 329(18): 3660–3678. doi: 10.1016/j.jsv.2010.03.020
|
[16] |
SHAH H, HOSDER S, KOZIEL S, et al. Multi-fidelity robust aerodynamic design optimization under mixed uncertainty[J]. Aerospace Science and Technology, 2015, 45: 17–29. doi: 10.1016/j.ast.2015.04.011
|
[17] |
JONE B A, PARRISH N L, WERNER M S, et al. Post-maneuver collision probability estimation using polynomial chaos[J]. Advances in the Astronautical Sciences, 2014, 150: 261–280.
|
[18] |
宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2018, 39(2): 97–106.
SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 97–106 (in Chinese).
|
[19] |
蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报, 2017, 38(3): 490–497.
CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 490–497 (in Chinese).
|
[20] |
魏骁, 冯佰威, 刘祖源, 等. 基于多维多项式混沌展开法的船舶不确定性优化设计[J]. 船舶工程, 2018, 40(1): 42–47.
WEI X, FENG B W, LIU Z Y, et al. Ship uncertainty optimization design based on multidimensional polynomial chaos expansion method[J]. Ship Engineering, 2018, 40(1): 42–47 (in Chinese).
|
[21] |
梁霄, 陈江涛, 王瑞利, 等. 非接触水下爆炸下舰船冲击环境的不确定度量化[J]. 中国舰船研究, 2020, 15(6): 128–136.
LIANG X, CHEN J T, WANG R L, et al. The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion[J]. Chinese Journal of Ship Research, 2020, 15(6): 128–136.
|
[22] |
李冬琴, 蒋志勇, 赵欣. 多维随机不确定性下的船舶多学科稳健设计优化研究[J]. 船舶工程, 2015, 37(11): 61–66.
LI D Q, JIANG Z Y, ZHAO X. Ship Multidisciplinary robust design optimization under multidimensional stochastic uncertainties[J]. Ship Engineering, 2015, 37(11): 61–66 (in Chinese).
|
[23] |
李冬琴, 赵欣, 管义锋. 基于多维PC扩展的多学科稳健优化算法研究[J]. 舰船科学技术, 2016, 38(1): 132–136, 149. doi: 10.3404/j.issn.1672-7649.2016.1.028
LI D Q, ZHAO X, GUAN Y F. Robust multidisciplinary design optimization based on multidimensional polynomial chaos expansion[J]. Ship Science and Technology, 2016, 38(1): 132–136, 149 (in Chinese). doi: 10.3404/j.issn.1672-7649.2016.1.028
|
[24] |
TEMPLETON B A, COX D E, KENNY S P, et al. On controlling an uncertain system with polynomial chaos and H2 control design[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(6): 061304. doi: 10.1115/1.4002474
|
[25] |
DU Y C, BUDMAN H, DUEVER T. Robust self-tuning control design under probabilistic uncertainty using polynomial chaos expansion-based Markov models[J]. IFAC-PapersOnLine, 2018, 51(18): 750–755. doi: 10.1016/j.ifacol.2018.09.273
|
[26] |
李伟平, 王磊, 张宝珍, 等. 基于不确定性和模糊理论的汽车平顺性优化[J]. 机械科学与技术, 2013, 32(5): 636–640.
LI W P, WANG L, ZHANG B Z, et al. Optimizing vehicle ride comfort based on uncertainty theory and fuzzy theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(5): 636–640 (in Chinese).
|
[27] |
姜潮. 基于区间的不确定性优化理论与算法[D]. 长沙: 湖南大学, 2008.
JIANG C. Theories and algorithms of uncertain optimization based on interval[D]. Changsha: Hunan University, 2008 (in Chinese).
|
[28] |
锁斌. 基于证据理论的不确定性量化方法及其在可靠性工程中的应用研究[D]. 绵阳: 中国工程物理研究院, 2012.
SUO B. Uncertainty quantification method based on evidence theory and its application in reliability engineering[D]. Mianyang: China Academy of Engineering Physics, 2012.
|
[29] |
曹立雄. 基于证据理论的结构不确定性传播与反求方法研究[D]. 长沙: 湖南大学, 2019.
CAO L X. Research on structural uncertainty propagation and inverse method based on evidence theory[D]. Changsha: Hunan University, 2019 (in Chinese).
|
[30] |
ASME. Guide for verification and validation in computational solid mechanics: ASME V & V 10-2006[S]. New York: American Society of Mechanical Engineers, 2006.
|
[31] |
MELDI M, SALVETTI M V, SAGAUT P. Quantification of errors in large-eddy simulations of a spatially evolving mixing layer using polynomial chaos[J]. Physics of Fluids, 2012, 24(3): 035101. doi: 10.1063/1.3688135
|
[32] |
王瑞利, 刘全, 温万治. 非嵌入式多项式混沌法在爆轰产物JWL参数评估中的应用[J]. 爆炸与冲击, 2015, 35(1): 9–15. doi: 10.11883/1001-1455(2015)01-0009-07
WANG R L, LIU Q, WEN W Z. Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL[J]. Explosion and Shock Waves, 2015, 35(1): 9–15 (in Chinese). doi: 10.11883/1001-1455(2015)01-0009-07
|
[33] |
赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6): 63–73.
ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 63–73 (in Chinese).
|
[34] |
刘全, 王瑞利, 林忠. 非嵌入式多项式混沌方法在拉氏计算中的应用[J]. 固体力学学报, 2013, 33(增刊 1): 224–233.
LIU Q, WANG R L, LIN Z. Uncertainty quantification for Lagrangian computation using non-intrusive polynomial chaos[J]. Acta Mechnica Solida Sinica, 2013, 33(Supp 1): 224–233 (in Chinese).
|
[35] |
ENDERLE B, RAUCH B, GRIMM F, et al. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: a case study[J]. Combustion and Flame, 2019, 213: 26–38.
|
[36] |
SCHAEFER J, HOSDER S, WEST T, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2016, 55(1): 1–19.
|
[37] |
SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framework for industrial-scale aerodynamic analysis[C]//AIAA SciTech Forum, 7-11 January 2019. San Diego, California: AIAA, 2019.
|
[38] |
LI J, GAO Z H, HUANG J Y, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2): 309–318. doi: 10.1016/j.cja.2013.02.007
|
[39] |
WU X J, ZHANG W W, SONG S F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Structural and Multidisciplinary Optimization, 2017, 57(2): 639–651.
|
[40] |
EL MAANI R, MAKHLOUFI A, RADI B, et al. Reliability-based design optimization with frequency constraints using a new safest point approach[J]. Engineering Optimization, 2018, 50(10): 1715–1732. doi: 10.1080/0305215X.2017.1416109
|
[41] |
CHEN Z Z, WU Z H, LI X K, et al. A multiple-design-point approach for reliability-based design optimization[J]. Engineering Optimization, 2019, 51(5): 875–895. doi: 10.1080/0305215X.2018.1500561
|
[42] |
ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles[R]. Hampton, VA: NASA, 2002.
|
[43] |
LIE W, YANG S Y, BAI Y N, et al. Efficient robust optimization based on polynomial chaos and Tabu search algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1): 145–150.
|
[44] |
MANDUR J, BUDMAN H. A polynomial-chaos based algorithm for robust optimization in the presence of Bayesian Uncertainty[J]. IFAC Proceedings Volumes, 2012, 45(15): 549–554. doi: 10.3182/20120710-4-SG-2026.00041
|
[45] |
HUANG Y C, LI H Y, DU X, et al. Mars entry trajectory robust optimization based on evidence under epistemic uncertainty[J]. Acta Astronautica, 2019, 163: 225–237.
|
[46] |
ONORATO G, LOEVEN G J A, GHORBANIASL G, et al. Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics[C]//European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal: [s.n.], 2010.
|
[47] |
XIONG F F, CHEN S S, XIONG Y. Dynamic system uncertainty propagation using polynomial chaos[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1156–1170. doi: 10.1016/j.cja.2014.08.010
|
[48] |
WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897–936. doi: 10.2307/2371268
|
[49] |
WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno,NV, USA: AIAA, 2006.
|
[50] |
ZHANG G, BAI J J, WANG L X, et al. Uncertainty analysis of arbitrary probability distribution based on Stieltjes Process[C]//IEEE 21st Workshop on Signal and Power Integrity (SPI). Baveno, Italy: IEEE, 2017.
|
[51] |
XU Y J, MILI L, SANDU A, et al. Propagating uncertainty in power system dynamic simulations using polynomial chaos[J]. IEEE Transactions on Power Systems, 2019, 34(1): 338–348. doi: 10.1109/TPWRS.2018.2865548
|
[52] |
OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2012, 106: 179–190.
|
[53] |
WANG F G, XIONG F F, JIANG H, et al. An enhanced data-driven polynomial chaos method for uncertainty propagation[J]. Engineering Optimization, 2018, 50(2): 273–292. doi: 10.1080/0305215X.2017.1323890
|
[54] |
SOCIE D F. Seminar notes: probabilistic aspects of fatigue[M]. Illinois: University of Illinois Press, 2003.
|
[55] |
苏松松, 冷小磊. 考虑空间相关性的飞行器气动噪声响应分析[J]. 江苏航空, 2011(增刊 1): 115–117.
SU S S, LENG X L. Aerodynamic noise response analysis of aircraft considering spatial correlation[J]. Jiangsu Aviation, 2011(Supp 1): 115–117 (in Chinese).
|
[56] |
RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489–494.
|
[57] |
ROSENBLATT M. Remarks on a multivariate transformation[J]. Annals of Mathematical Statistics, 1952, 23(3): 470–472. doi: 10.1214/aoms/1177729394
|
[58] |
KIUREGHIAN A D, LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics, 1986, 112(1): 85–104. doi: 10.1061/(ASCE)0733-9399(1986)112:1(85)
|
[59] |
LIN Q Z, XIONG F F, WANG F G, et al. A data-driven polynomial chaos method considering correlated random variables[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 2131–2147.
|
[60] |
PAULSON J A, BUEHLER E A, MESBAH A. Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems[J]. IFAC-PapersOnLine, 2017, 50(1): 3548–3553. doi: 10.1016/j.ifacol.2017.08.954
|
[61] |
WANG G Z, XIN H H, WU D, et al. Data-driven arbitrary polynomial chaos-based probabilistic load flow considering correlated uncertainties[J]. IEEE Transactions on Power Systems, 2019, 34(4): 3274–3276. doi: 10.1109/TPWRS.2019.2908089
|
[62] |
XIONG F F, CHEN W, XIONG Y, et al. Weighted stochastic response surface method considering sample weights[J]. Structural and Multidisciplinary Optimization, 2011, 43(6): 837–849. doi: 10.1007/s00158-011-0621-3
|
[63] |
HU C, YOUN B D. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems[J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 419–442. doi: 10.1007/s00158-010-0568-9
|
[64] |
MONTGOMERY D C. Design and Analysis of Experiments[M]. New York: Wiley, 1976.
|
[65] |
SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Doklady Akademii Nauk, 1963, 148(5): 1042–1045.
|
[66] |
XIONG F F, GREENE S, CHEN W, et al. A new sparse grid based method for uncertainty propagation[J]. Structural and Multidisciplinary Optimization, 2010, 41(3): 335–349. doi: 10.1007/s00158-009-0441-x
|
[67] |
ISUKAPALLI S S. Uncertainty analysis of transport-transformation models[D]. New Brunswick: The State University of New Jersey, 1999.
|
[68] |
ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems[J]. Risk Analysis, 2000, 20(5): 591–602. doi: 10.1111/0272-4332.205054
|
[69] |
HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii: AIAA, 2007.
|
[70] |
WEI D L, CUI Z S, CHEN J. Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules[J]. Computers & Structures, 2008, 86(23–24): 2102–2108.
|
[71] |
HAMPTON J, DOOSTAN A. Basis adaptive sample efficient polynomial chaos (BASE-PC)[J]. Journal of Computational Physics, 2018, 371: 20–49. doi: 10.1016/j.jcp.2018.03.035
|
[72] |
BLATMAN G, SUDRET B. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[J]. Comptes Rendus Mécanique, 2008, 336(6): 518–523.
|
[73] |
BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345–2367. doi: 10.1016/j.jcp.2010.12.021
|
[74] |
王丰刚. 面向飞行器设计的混沌多项式方法研究[D]. 北京: 北京理工大学, 2019.
WANG F G. Research on polynomial chaos method for flight vehicle design[D]. Beijing: Beijing Institute of Technology, 2019 (in Chinese).
|
[75] |
陈光宋, 钱林方, 吉磊. 身管固有频率高效全局灵敏度分析[J]. 振动与冲击, 2015, 34(21): 31–36.
CHEN G R, QIAN L F, JI L. An effective global sensitivity analysis method for natural frequencies of a barrel[J]. Journal of Vibration and Shock, 2015, 34(21): 31–36 (in Chinese).
|
[76] |
CHENG K, LU Z Z. Sparse polynomial chaos expansion based on D-MORPH regression[J]. Applied Mathematics and Computation, 2018, 323: 17–30. doi: 10.1016/j.amc.2017.11.044
|
[77] |
DIAZ P, DOOSTAN A, HAMPTON J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 336: 640–666.
|
[78] |
TSILIFIS P, HUAN X, SAFTA C, et al. Compressive sensing adaptation for polynomial chaos expansions[J]. Journal of Computational Physics, 2019, 380: 29–47. doi: 10.1016/j.jcp.2018.12.010
|
[79] |
陈江涛, 章超, 刘骁, 等. 基于稀疏多项式混沌方法的不确定性量化分析[J]. 航空学报, 2020, 41(3): 169–177.
CHEN J T, ZHANG C, LIU X, et al. Uncertainty quantification analysis with sparse polynomial chaos method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 169–177 (in Chinese).
|
[80] |
GAO X F, WANG Y J, SPOTTS N, et al. Fast uncertainty quantification in engine nacelle inlet design using a reduced dimensional polynomial chaos approach[C]//AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT: AIAA, 2016.
|
[81] |
WINOKUR J G. Adaptive sparse grid approaches to polynomial chaos expansions for uncertainty quantification[D]. Durham: Duke University, 2015.
|
[82] |
WU X J, ZHANG W W, SONG S F, et al. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties[J]. Chinese Journal of Aeronautics, 2018, 31(5): 997–1011. doi: 10.1016/j.cja.2018.03.011
|
[83] |
XIONG F F, XUE B, ZHANG Y, et al. Polynomial chaos expansion based robust design optimization[C]//2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering. Xi'an, China: IEEE, 2011: 868-873.
|
[84] |
KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1): 1–13. doi: 10.1093/biomet/87.1.1
|
[85] |
NG L W T, ELDRED M. Multifidelity Uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012.
|
[86] |
PALAR P S, TSUCHIYA T, PARKS G T. Multi-fidelity non-intrusive polynomial chaos based on regression[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 579–606. doi: 10.1016/j.cma.2016.03.022
|
[87] |
MATTEO B. Multi-fidelity surrogate modelling with polynomial chaos expansions[D]. Zurich, Switzerland: ETH ,2016.
|
[88] |
YAN L, ZHOU T. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems[J]. Journal of Computational Physics, 2019, 381: 110–128. doi: 10.1016/j.jcp.2018.12.025
|
[89] |
CHENG K, LU Z Z, ZHEN Y. Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 360–377. doi: 10.1016/j.cma.2019.02.021
|
[90] |
WANG F G, XIONG F F, CHEN S S, et al. Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling[J]. Structural and Multidisciplinary Optimization, 2019, 60(4): 1583–1604. doi: 10.1007/s00158-019-02287-7
|
[91] |
REN C K, XIONG F F, MO B, et al. Design sensitivity analysis with polynomial chaos for robust optimization[J]. Structural and Multidisciplinary Optimization, 2021, 63(4): 357–373.
|
[92] |
SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964–979.
|
[93] |
PALAR P S, ZUHAL L R, SHIMOYAMA K, et al. Global sensitivity analysis via multi-fidelity polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2018, 170: 175–190.
|
[94] |
CHENG K, LU Z Z. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 2018, 194: 86–96.
|
[95] |
王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 64–77.
WANG H, YAN Z, XU X Y, et al. Global sensitivity analysis for islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 64–77 (in Chinese).
|
[96] |
卜令泽. 全局灵敏度与结构可靠度分析——基于偏最小二乘回归的多项式混沌展开方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
BU L Z. Global sensitivity and structural reliability analysis: research on partial least squares-based polynomial chaos expansion method[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
|
[97] |
孙佳, 陈光宋, 钱林方, 等. 自动装填机构刚度混合全局灵敏度分析[J]. 南京理工大学学报, 2019, 43(2): 135–140.
SUN J, CHEN G S, QIAN L F, et al. Combined global sensitivity analysis for stiffness of automatic loading mechanism[J]. Journal of Nanjing University of Science and Technology, 2019, 43(2): 135–140 (in Chinese).
|
[98] |
王娟. 基于替代模型的可靠性与灵敏度分析方法研究[D]. 南京: 南京理工大学, 2018.
WANG J. Research on methods of reliability and sensitivity analysis based on meta-models[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese).
|
[99] |
梁霄, 王瑞利. 混合不确定度量化方法及其在计算流体动力学迎风格式中的应用[J]. 爆炸与冲击, 2016, 36(4): 509–515. doi: 10.11883/1001-1455(2016)04-0509-07
LIANG X, WANG R L. Mixed uncertainty quantification and its application in upwind scheme for computational fluid dynamics (CFD)[J]. Explosion and Shock Waves, 2016, 36(4): 509–515 (in Chinese). doi: 10.11883/1001-1455(2016)04-0509-07
|
[100] |
KARANKI D R, KUSHWAHA H S, VERMA A K, et al. Uncertainty analysis based on probability bounds (P-box) approach in probabilistic safety assessment[J]. Risk Analysis, 2010, 29(5): 662–675.
|
[101] |
LIU X, YIN L R, HU L, et al. An efficient reliability analysis approach for structure based on probability and probability box models[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 167–181. doi: 10.1007/s00158-017-1659-7
|
[102] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1–22. doi: 10.1111/j.2517-6161.1977.tb01600.x
|
[103] |
YIN S W, YU D J, LUO Z, et al. An arbitrary polynomial chaos expansion approach for response analysis of acoustic systems with epistemic uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 280–302. doi: 10.1016/j.cma.2017.12.025
|
[104] |
胡钩铭. 一种面向随机与认知不确定性的稳健优化设计方法研究[D]. 绵阳: 中国工程物理研究院, 2012.
HU G M. A methodology research on robust design optimization considering aleatory and epistemic uncertainty[D]. Mianyang: China Academy of Engineering Physics, 2012 (in Chinese).
|
[105] |
DEY S, MUKHOPADHYAY T, KHODAPARAST H H, et al. Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion[J]. Applied Mathematical Modelling, 2016, 40(7–8): 4412–4428. doi: 10.1016/j.apm.2015.11.038
|
[106] |
ABDO H, FLAUS J M. Uncertainty quantification in dynamic system risk assessment: a new approach with randomness and fuzzy theory[J]. International Journal of Production Research, 2016, 54(19): 5862–5885. doi: 10.1080/00207543.2016.1184348
|
[107] |
ZAMAN K, RANGAVAJHALA S, MCDONALD M P, et al. A Probabilistic approach for representation of interval uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(1): 117–130.
|
[108] |
姜潮, 刘丽新, 龙湘云, 等. 一种概率−区间混合结构可靠性的高效计算方法[J]. 计算力学学报, 2013, 30(5): 605–609. doi: 10.7511/jslx201305002
JIANG C, LIU L X, LONG X Y, et al. An efficient reliability analysis method for structures with probability-interval mixed uncertainty[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 605–609 (in Chinese). doi: 10.7511/jslx201305002
|
[109] |
SANKARARAMAN S, MAHADEVAN S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering & System Safety, 2011, 96(7): 814–824.
|
[1] | CHENG Meng, ZHOU Qi, WEI Xiao, WANG Jian, CHEN Wei. Research on multi-fidelity surrogate modeling method for non-hierarchical low-fidelity analysis model problem[J]. Chinese Journal of Ship Research, 2024, 19(6): 82-96. DOI: 10.19693/j.issn.1673-3185.03980 |
[2] | WEI Ye, ZHANG Zhenguo. Modeling and characteristic analysis of unsteady broadband excitation spectrum of thruster based on OU-Gaussian process[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04109 |
[3] | Chen Xue, Wang Deyu. Analysis on the shape-size coupling optimization of ore carrier's hatch corners based on sub-model under multiple load cases[J]. Chinese Journal of Ship Research, 2019, 14(6): 130-138, 154. DOI: 10.19693/j.issn.1673-3185.01511 |
[4] | Du Xiaojia, Ding Fan. Stealth analysis and sensitivity calculation of ship air-intake grille[J]. Chinese Journal of Ship Research, 2019, 14(6): 81-87. DOI: 10.19693/j.issn.1673-3185.01529 |
[5] | LIU Shuxiao, TANG Yougang, LI Yan, LIU Chengyi. 内转塔单点系泊刚度对不同参数的敏感性分析[J]. Chinese Journal of Ship Research, 2015, 10(4): 86-93. DOI: 10.3969/j.issn.1673-3185.2015.04.013 |
[6] | DING Deyong, WANG Hu, LING Hao, HE Shutao. I型金属夹层结构连接构件强度特性研究及灵敏度分析[J]. Chinese Journal of Ship Research, 2014, 9(2): 22-29. DOI: 10.3969/j.issn.1673-3185.2014.02.005 |
[7] | CHEN Jing, ZHAN Dawei, LIU Jiangyuan, ZHENG Shaoping, CHENG Yuansheng. 基于Kriging模型的船舶典型双层底板架强度和稳定性全局敏度分析[J]. Chinese Journal of Ship Research, 2014, 9(1): 72-80. DOI: 10.3969/j.issn.1673-3185.2014.01.011 |
[8] | Peng Weicai, He Zeng. Radiated Sound Power Sensitivity Analysis Based on Statistical Energy Analysis Model[J]. Chinese Journal of Ship Research, 2009, 4(6): 11-14. DOI: 10.3969/j.issn.1673-3185.2009.06.003 |
[9] | Han Xiaoxi, Guangzhen, Yang Yuan. 基于BP神经网络的维修性设计参数灵敏度分析[J]. Chinese Journal of Ship Research, 2008, 3(6): 66-69. DOI: 10.3969/j.issn.1673-3185.2008.06.016 |
[10] | Zou Chunping. Sensitivity Analysis for the Structural Vibration Response of Ships[J]. Chinese Journal of Ship Research, 2006, 1(2): 26-31. DOI: 10.3969/j.issn.1673-3185.2006.02.006 |