ZHU J X, WU J M, LIU Y C, et al. Rapid determination method of minimum stable topological plate thickness in topology optimization of complex hull structures[J]. Chinese Journal of Ship Research, 2021, 16(6): 159–165. DOI: 10.19693/j.issn.1673-3185.02055
Citation: ZHU J X, WU J M, LIU Y C, et al. Rapid determination method of minimum stable topological plate thickness in topology optimization of complex hull structures[J]. Chinese Journal of Ship Research, 2021, 16(6): 159–165. DOI: 10.19693/j.issn.1673-3185.02055

Rapid determination method of minimum stable topological plate thickness in topology optimization of complex hull structures

More Information
  • Received Date: August 01, 2020
  • Revised Date: December 23, 2020
  • Available Online: May 25, 2021
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  The design domain for the topological optimization of ship structures is usually based on two-dimensional shell elements. However, the thickness difference of the design domain affects the setting of volume fraction constraints and the acquisition of stable topological configuration, restricting the practical application of the topology optimization method in the field of hull structure design. Thus, relevant research needs to be carried out to solve this problem.
      Methods  This paper takes the transverse web frame in the cargo tank of a very large crude oil carrier (VLCC) as the optimization object, and puts forward a compromise method for setting the volume fraction constraint value of the complex hull structure, as well as a method for determining the minimum stable topological plate thickness of the transverse web frame via element statistics.
      Results  Through theoretical analysis and trial calculation, it is found that the volume fraction value and minimum stable topological plate thickness can be obtained more reliably using this method.
      Conclusions  The proposed method possesses validity and feasibility, and is able to provide technical support for the optimization design of the transverse web frames of large oil tankers. It can also provide references for the topology optimization of other complex hull structures.
  • [1]
    朱俊侠. 拓扑优化方法在油船结构设计中的应用研究[D]. 大连: 大连理工大学, 2019.

    ZHU J X. Application research on topology optimization method in structural design for oil tankers[D]. Dalian: Dalian University of Technology, 2019 (in Chinese).
    [2]
    汤颖颖. 基于变密度法的连续体拓扑优化设计[D]. 西安: 长安大学, 2008.

    TANG Y Y. Research on topology optimization methods of continuum structure based on variable density method[D]. Xi'an: Chang'an University, 2008 (in Chinese).
    [3]
    BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635–654.
    [4]
    BENDSOE M P, SIGMUND O. Topology optimization: theory, methods and applications[M]. Berlin: Springer, 2003.
    [5]
    QIU W Q, GAO C, SUN L, et al. Research on topology optimization method for tanker structures in cargo tank region[C]//TSCF 2016 Shipbuilders Meeting. Shanghai, China: Marine Design & Research Institute of China, 2016.
    [6]
    刘宏亮. 油船中剖面结构拓扑优化研究[D]. 上海: 上海交通大学, 2014.

    LIU H L. Study on topology optimization to mid-section structures of oil tankers[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
    [7]
    邱伟强, 杨德庆, 高处, 等. 基于拓扑优化的油船货舱结构设计研究[J]. 船舶, 2016, 27(5): 1–11.

    QIU W Q, YANG D Q, GAO C, et al. Structural design in cargo tank region for oil tankers based on topology optimization[J]. Ship & Boat, 2016, 27(5): 1–11 (in Chinese).
    [8]
    ZHU J X, WU J M. Research on topology optimization of transverse web frame in midship cargo hold region of VLCC based on variable density method[C]//The 30th International Ocean and Polar Engineering Conference. Virtual: ISOPE, 2020.
    [9]
    洪清泉, 赵康, 张攀, 等. OptiStruct & HyperStudy理论基础与工程应用[M]. 北京: 机械工业出版社, 2012: 11.

    HONG Q Q, ZHAO K, ZHANG P, et al. The theory foundation and engineering application of OptiStruct & HyperStudy[M]. Beijing: China Machine Press, 2012, 11 (in Chinese).
    [10]
    IACS. Common structural rules for bulk carriers and oil tanker[S]. [S.1.]: International Association of Classification Society, 2017.
  • Related Articles

    [1]WU Fan, HUA Lin. Current status and prospects of reliability analysis of hull structures under corrosion and fatigue damage[J]. Chinese Journal of Ship Research, 2017, 12(5): 52-63. DOI: 10.3969/j.issn.1673-3185.2017.05.007
    [2]LI Zengguang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013
    [3]ZHANG Huixin, YANG Deqing. Typical shape and topology optimization design of the ship grillage structure[J]. Chinese Journal of Ship Research, 2015, 10(6): 27-33,59. DOI: 10.3969/j.issn.1673-3185.2015.06.005
    [4]WANG Xueliang, YANG Peng, GU Xuekang, HU Jiajun. 船体结构砰击总体载荷理论研究综述[J]. Chinese Journal of Ship Research, 2015, 10(1): 7-18. DOI: 10.3969/j.issn.1673-3185.2015.01.002
    [5]SONG Yiqi, WANG Peiyu, CHANG Shouming, FU Anbang. 基于FORAN的船体结构底层数据结构分析[J]. Chinese Journal of Ship Research, 2014, 9(5): 26-32. DOI: 10.3969/j.issn.1673-3185.2014.05.005
    [6]QU Fei, LI Kai, LI Xiangning, YANG Xionghui. 有限域液体附加质量对板结构振动特性的影响[J]. Chinese Journal of Ship Research, 2012, 7(3): 41-45. DOI: 10.3969/j.issn.1673-3185.2012.03.008
    [7]Xu Haiqiu, Wang Xiaoxia, Chen Zhijian, Ai Haifeng, Xia Qiqiang. 建造中的船体在船台上的应力松驰现象研究[J]. Chinese Journal of Ship Research, 2010, 5(5): 72-76. DOI: 10.3969/j.issn.1673-3185.2010.05.015
    [8]Yang Jun, Qi Enrong. 损伤舰船结构安全性评估[J]. Chinese Journal of Ship Research, 2007, 2(5): 15-18. DOI: 10.3969/j.issn.1673-3185.2007.05.004
    [9]Chen Jiejie, Li Yan, Wu Bo. 基于CADDS5和VB的三维船体结构重量重心及材料统计计算系统[J]. Chinese Journal of Ship Research, 2007, 2(4): 51-55. DOI: 10.3969/j.issn.1673-3185.2007.04.012
    [10]Li Yan. 三维设计在船体结构中的应用[J]. Chinese Journal of Ship Research, 2007, 2(1): 14-18. DOI: 10.3969/j.issn.1673-3185.2007.01.003
  • Cited by

    Periodical cited type(4)

    1. 吴嘉蒙,汤雅敏,朱文博,蔡诗剑,韩涛,朱俊侠,王元. 轻量化结构设计的新颖度评价及安全评估方法. 船舶. 2024(01): 118-129 .
    2. 高强,王健,张严,郑旭阳,吕昊,殷国栋. 拓扑优化方法及其在运载工程中的应用与展望. 机械工程学报. 2024(04): 369-390 .
    3. 李振荣,夏利娟,冯朔. 基于UNet深度学习的VLCC横框架拓扑优化分析. 中国舰船研究. 2024(06): 108-116 . 本站查看
    4. 杜光凤. 基于知识工程的船体结构快速设计及优化. 船舶物资与市场. 2023(03): 31-33 .

    Other cited types(1)

Catalog

    Article views (720) PDF downloads (57) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return