YANG J, YU M H, PENG Y X, et al. Multi-objective optimization of carrier-based aircraft support personnel configuration[J]. Chinese Journal of Ship Research, 2021, 16(6): 34–44. DOI: 10.19693/j.issn.1673-3185.02019
Citation: YANG J, YU M H, PENG Y X, et al. Multi-objective optimization of carrier-based aircraft support personnel configuration[J]. Chinese Journal of Ship Research, 2021, 16(6): 34–44. DOI: 10.19693/j.issn.1673-3185.02019

Multi-objective optimization of carrier-based aircraft support personnel configuration

More Information
  • Received Date: June 27, 2020
  • Revised Date: March 17, 2021
  • Available Online: May 25, 2021
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   Flight-deck support operations are the most critical link in the process of launch and recovery of carrier-based aircraft.The reasonable allocation of support personnel can enable to improve the capability of supporting the aircraft fleet operation and the sortie generation rate, thereby enhancing the overall combat effectiveness of the carrier.
      Method   Aiming at the personnel configuration problem of the carrier-based aircraft flight-deck operation support, considering the complex realistic environment and based on the makespan of the aircraft fleet operation support, load balance and cumulative transfer time of support personnel on flight deck, a multi-objective mathematical programming model is established to obtain the required numbers of support personnel and skill allocation scheme. An integer encoding method and decoding method based on the event-based scheduling policy are designed, and an improved NSGA2-based personnel optimization algorithm is proposed to solve the problem.
      Results   The simulation results show that this algorithm can effectively solve the established mathematical model, and the simulation results meet the actual combat requirements.
      Conclusion   The improved NSGA2 algorithm can combine the carrier-based aircraft support process, numbers of personnel and skill allocation to provide the carrier-based aircraft support operation with a multi-objective optimized scheduling plan.
  • [1]
    韩维, 王庆官. 航母与舰载机概论[M]. 烟台: 海军航空工程学院出版社, 2009: 37–41.

    HAN W, WANG Q G. Conspectus of aircraft carrier and carrier plane[M]. Yantai: Naval Aeronautical and Astronautical University Press, 2009: 37–41 (in Chinese).
    [2]
    屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5): 221675.

    QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 221675 (in Chinese).
    [3]
    RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling[C]//Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011.
    [4]
    MICHINI B, HOW J P. A human-interactive course of action planner for aircraft carrier deck operations[C]// Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011.
    [5]
    RYAN J C, BANERJEE A G, CUMMINGS M L, et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 761–773. doi: 10.1109/TCYB.2013.2271694
    [6]
    魏昌全, 陈春良, 王保乳. 基于出动方式的舰载机航空保障调度模型[J]. 海军航空工程学院学报, 2012, 27(1): 111–114. doi: 10.3969/j.issn.1673-1522.2012.01.025

    WEI C Q, CHEN C L, WANG B R. Research on the aircraft support scheduling model of carrier-based aircraft based on launch mode[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(1): 111–114 (in Chinese). doi: 10.3969/j.issn.1673-1522.2012.01.025
    [7]
    韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37(4): 809–816. doi: 10.3969/j.issn.1001-506X.2015.04.14

    HAN W, SU X C, CHEN J F. Integrated maintenance support scheduling method of multi-carrier aircrafts[J]. Systems Engineering and Electronics, 2015, 37(4): 809–816 (in Chinese). doi: 10.3969/j.issn.1001-506X.2015.04.14
    [8]
    孙长友. 舰载机保障作业调度计划优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    SUN C Y. Research on the optimization of carrier-based aircraft security operation scheduling[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [9]
    苏析超, 韩维, 史玮韦. 舰载机多机一体化机务保障调度研究[J]. 火力与指挥控制, 2015, 40(6): 26–30, 35. doi: 10.3969/j.issn.1002-0640.2015.06.007

    SU X C, HAN W, SHI W W. Research on integrated maintenance scheduling of multi-carrier aircrafts[J]. Fire Control & Command Control, 2015, 40(6): 26–30, 35 (in Chinese). doi: 10.3969/j.issn.1002-0640.2015.06.007
    [10]
    蒋婷婷, 韩维, 苏析超. 基于改进DE算法的舰载机保障调度优化[J]. 计算机仿真, 2018, 35(10): 51–56. doi: 10.3969/j.issn.1006-9348.2018.10.010

    JIANG T T, HAN W, SU X C. Optimization of carrier aircraft support scheduling based on improved DE algorithm[J]. Computer Simulation, 2018, 35(10): 51–56 (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.10.010
    [11]
    王强, 程云松. 世纪巨舰"尼米兹"[J]. 当代海军, 1996(6): 23–24.

    WANG Q, CHENG Y S. "Nimitz", the great ship of the century[J]. Modern Navy, 1996(6): 23–24 (in Chinese).
    [12]
    刘相春. 美国"福特"级航母"一站式保障"技术特征和关键技术分析[J]. 中国舰船研究, 2013, 8(6): 1–5.

    LIU X C. Technical features and critical technologies for the "pit-stop" aircraft servicing adopted by Ford class aircraft carriers[J]. Chinese Journal of Ship Research, 2013, 8(6): 1–5 (in Chinese).
    [13]
    苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 222314-1–222314-19.

    SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314-1–222314-19 (in Chinese).
    [14]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017
    [15]
    冯强, 曾声奎, 康锐. 基于MAS的舰载机动态调度模型[J]. 航空学报, 2009, 30(11): 2119–2125. doi: 10.3321/j.issn:1000-6893.2009.11.017

    FENG Q, ZENG S K, KANG R. A MAS-based model for dynamic scheduling of carrier aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2119–2125 (in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.017
    [16]
    张国辉, 胡一凡, 孙靖贺. 改进遗传算法求解多时间约束的柔性作业车间调度问题[J]. 工业工程, 2020, 23(2): 19–25, 48. doi: 10.3969/j.issn.1007-7375.2020.02.003

    ZHANG G H, HU Y F, SUN J H. An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J]. Industrial Engineering Journal, 2020, 23(2): 19–25, 48 (in Chinese). doi: 10.3969/j.issn.1007-7375.2020.02.003
    [17]
    GU J W, GU M Z, CAO C W, et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research, 2010, 37(5): 927–937.
    [18]
    龙钰洋. 基于遗传算法的舰载机保障人员配置优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    LONG Y Y. Research on genetic algorithm of the security personnel allocation optimization[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).

Catalog

    Article views (805) PDF downloads (121) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return