LIU Y, ZHA M, RAO S T, et al. Key technologies study and implementation of extreme low frequency transmission system[J]. Chinese Journal of Ship Research, 2021, 16(6): 116–123, 182. DOI: 10.19693/j.issn.1673-3185.02018
Citation: LIU Y, ZHA M, RAO S T, et al. Key technologies study and implementation of extreme low frequency transmission system[J]. Chinese Journal of Ship Research, 2021, 16(6): 116–123, 182. DOI: 10.19693/j.issn.1673-3185.02018

Key technologies study and implementation of extreme low frequency transmission system

More Information
  • Received Date: June 27, 2020
  • Revised Date: October 23, 2020
  • Available Online: May 25, 2021
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   Transmitting extreme low frequency (ELF) signals with a high signal-noise ratio (SNR) to cover Chinese territory and major territorial sea areas can provide a radiating signal service for trial and exploratory research projects such as underground resource sounding, seismic prediction, etc.
      Methods   This paper explains the primary principle of horizontal low-profile antennae in radiating ELF signals, introduces ELF transmission system composition, analyzes key technologies such as ELF power amplification, horizontal antennae tuning, detection and control of strong power electromagnetic fields, composite lightning-proof measures, etc., and designs and constructs the first-ever civilian ELF transmission station in the world, through which long-range field tests and trials with a coverage of thousands of kilometers are accomplished.
      Results   The test and trial results indicate that ELF signals can cover Chinese territory and major territorial sea area 10-20 dB higher than natural signals, with a sounding depth of up to 10 km.
      Conclusions   The ELF transmission station can provide a brand-new open public platform for research on geological exploration and seismic prediction, thereby contributing to the development of primary disciplines in China including low-frequency radioactivity, space physics, geophysics, etc.
  • [1]
    张平. 地震极低频电磁观测在云南地区的建设应用进展[J]. 国际地震动态, 2019(8): 158–159. doi: 10.3969/j.issn.0253-4975.2019.08.126

    ZHANG P. Application of seismic ELF electromagnetic observation in Yunnan, China[J]. Recent Developments in World Seismology, 2019(8): 158–159 (in Chinese). doi: 10.3969/j.issn.0253-4975.2019.08.126
    [2]
    刘勇, 张杨勇, 孔亚丽, 等. 极低频探地工程及其发展应用[C]//国家安全地球物理丛书(十三)——军民融合与地球物理. 西安: 西安地图出版社, 2017: 158–162.

    LIU Y, ZHANG Y Y, KONG Y L, et al. WEM project and its application[C]//National safety geophysics (13) —military-civilian communion and geophysics. Xi’an: Xi’an Map Press, 2017: 158–162 (in Chinese).
    [3]
    刘勇, 孔亚丽, 丁葵, 等. 极低频探地工程海洋资源勘探应用探索[J]. 中国造船, 2019, 60(S1): 21–27.

    LIU Y, KONG Y L, DING K, et al. Wireless electro-magnetic method and its application in discovery of marine resources[J]. Shipbuilding of China, 2019, 60(S1): 21–27 (in Chinese).
    [4]
    卓贤军, 陆建勋. “极低频探地工程”在资源探测和地震预测中的应用与展望[J]. 舰船科学技术, 2010, 32(6): 3–7, 30.

    ZHUO X J, LU J X. Application and prospect of WEM to resource exploration and earthquake predication[J]. Ship Science and Technology, 2010, 32(6): 3–7, 30 (in Chinese).
    [5]
    陆建勋. 极低频与超低频无线电技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2019.

    LU J X. WEM and SLF radioactivity[M]. Harbin: Harbin Engineering University Press, 2019 (in Chinese).
    [6]
    刘勇, 孙景芳. 0.1 Hz~30 kHz频段电波特性及应用研究[J]. 舰船科学技术, 2008, 30(增刊 1): 36–41.

    LIU Y, SUN J F. The characteristics and application research of 0.1 Hz-30 kHz radios[J]. Ship Science and Technology, 2008, 30(Supp 1): 36–41 (in Chinese).
    [7]
    崔玉国, 王元新. 地基ELF线天线在地-电离层壳体中产生的场[J]. 电波科学学报, 2016, 31(5): 851–857.

    CUI Y G, WANG Y X. Fields excited by groundsill ELF linear antenna in earth-ionosphere cavity[J]. Chinese Journal of Radio Science, 2016, 31(5): 851–857 (in Chinese).
    [8]
    郝书吉, 李清亮, 杨巨涛, 等. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析[J]. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402

    HAO S J, LI Q L, YANG J T, et al. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere[J]. Acta Physica Sinica, 2013, 62(22): 229402 (in Chinese). doi: 10.7498/aps.62.229402
    [9]
    史伟, 滕敦朋. 基于接地天线的超低频信号全向辐射方法[J]. 现代电子技术, 2012, 35(22): 91–93, 96.

    SHI W, TENG D P. Method of SLF signal omni-directional radiation based on grounded antenna[J]. Modern Electronics Technique, 2012, 35(22): 91–93, 96 (in Chinese).
    [10]
    周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学(技术科学), 2020, 50(1): 69–84. doi: 10.1360/SST-2019-0118

    ZHOU Q, YAO F Q, SHI W, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia Sinica Technologica, 2020, 50(1): 69–84 (in Chinese). doi: 10.1360/SST-2019-0118
    [11]
    崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792

    CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [12]
    柳超, 翟琦, 谢慧, 等. 极低频发射天线场地等效视电阻率的计算[J]. 西安电子科技大学学报(自然科学版), 2005, 32(4): 584–486, 656.

    LIU C, ZHAI Q, XIE H, et al. A calculating method of the effective apparent resistivity for the extremely low frequency transmitting antenna site[J]. Journal of Xidian University (Natural Science), 2005, 32(4): 584–486, 656 (in Chinese).
    [13]
    ΦDEGARD B, ERNST R. Applying IGCT’s, ABB Application Note 5SHY 42L6500[Z]. 2002.
    [14]
    李纵. 用于极低频地质探测的CPS-SPWM技术研究[D]. 北京: 中国舰船研究院, 2012.

    LI Z. Research on carrie phase shifted SPWM for ELF trasmitter[D]. Beijing: Chinese Ship Research Institute, 2012.
    [15]
    MWINYIWIWA B, OOI B T, WOLANSKI Z. UPFC using multiconverter operated by phase-shifted triangle carrier SPWM strategy[J]. IEEE Transactions on Industry Applications, 1998, 34(3): 495–500. doi: 10.1109/28.673719
  • Related Articles

    [1]LIU Ruijie, JIA Di, LIN Feichi, LANG Liang. Simulation and experiments of vibration-induced noise of low-frequency magnetic antenna[J]. Chinese Journal of Ship Research, 2023, 18(1): 158-162. DOI: 10.19693/j.issn.1673-3185.02401
    [2]YUAN Jianping, SUN Hanbing. Built-in test technology for electro-hydraulic servo-valve amplifier[J]. Chinese Journal of Ship Research, 2021, 16(3): 207-214. DOI: 10.19693/j.issn.1673-3185.01905
    [3]FAN Lisi, PAN Xiaodong, WANG Yun. 一种用于电磁脉冲定向辐射的TEM天线设计[J]. Chinese Journal of Ship Research, 2015, 10(2): 116-120. DOI: 10.3969/j.issn.1673-3185.2015.02.022
    [4]DENG Feng, DING Fan, ZHENG Shengquan. 通信设备机箱强电磁脉冲耦合预测方法[J]. Chinese Journal of Ship Research, 2015, 10(2): 70-73,98. DOI: 10.3969/j.issn.1673-3185.2015.02.013
    [5]LI Jingdong, CHEN Wenjun, CANG Xiaoyu. 一种舰船推力测量装置的结构和电磁兼容性设计[J]. Chinese Journal of Ship Research, 2014, 9(1): 121-126. DOI: 10.3969/j.issn.1673-3185.2014.01.018
    [6]SONG Dongan, ZHANG Qi, WEN Dinge, FANG Chonghua. 舰载平面阵天线布置中的电磁兼容性问题及控制措施[J]. Chinese Journal of Ship Research, 2012, 7(3): 15-18,29. DOI: 10.3969/j.issn.1673-3185.2012.03.003
    [7]Wang Weiji, Wu Haifeng, Zhao Jingang. 船用比例电磁铁动态性能自动测试系统研究[J]. Chinese Journal of Ship Research, 2011, 6(4): 96-98.103. DOI: 10.3969/j.issn.1673-3185.2011.04.021
    [8]Gao Baochun, Peng Ge, Hu Yifeng. 基于矩量法的线天线电磁散射和电磁辐射分析[J]. Chinese Journal of Ship Research, 2011, 6(3): 49-54. DOI: 10.3969/j.issn.1673-3185.2011.03.011
    [9]Wu Song, Li Hua. 人工神经网络在舰船火灾探测中的应用[J]. Chinese Journal of Ship Research, 2007, 2(6): 55-58. DOI: 10.3969/j.issn.1673-3185.2007.06.011
    [10]Wu Hongbin, Yi Xueqin. 基于HMC1053的低频磁场三维时域检测技术[J]. Chinese Journal of Ship Research, 2007, 2(3): 72-77. DOI: 10.3969/j.issn.1673-3185.2007.03.018
  • Cited by

    Periodical cited type(1)

    1. 谢慧,万露,岳智彬. 电阻率各向异性架设场地对水平天线的影响. 舰船电子工程. 2024(01): 204-208 .

    Other cited types(4)

Catalog

    Article views (1063) PDF downloads (149) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return