Citation: | LIU Y, ZHA M, RAO S T, et al. Key technologies study and implementation of extreme low frequency transmission system[J]. Chinese Journal of Ship Research, 2021, 16(6): 116–123, 182. DOI: 10.19693/j.issn.1673-3185.02018 |
[1] |
张平. 地震极低频电磁观测在云南地区的建设应用进展[J]. 国际地震动态, 2019(8): 158–159. doi: 10.3969/j.issn.0253-4975.2019.08.126
ZHANG P. Application of seismic ELF electromagnetic observation in Yunnan, China[J]. Recent Developments in World Seismology, 2019(8): 158–159 (in Chinese). doi: 10.3969/j.issn.0253-4975.2019.08.126
|
[2] |
刘勇, 张杨勇, 孔亚丽, 等. 极低频探地工程及其发展应用[C]//国家安全地球物理丛书(十三)——军民融合与地球物理. 西安: 西安地图出版社, 2017: 158–162.
LIU Y, ZHANG Y Y, KONG Y L, et al. WEM project and its application[C]//National safety geophysics (13) —military-civilian communion and geophysics. Xi’an: Xi’an Map Press, 2017: 158–162 (in Chinese).
|
[3] |
刘勇, 孔亚丽, 丁葵, 等. 极低频探地工程海洋资源勘探应用探索[J]. 中国造船, 2019, 60(S1): 21–27.
LIU Y, KONG Y L, DING K, et al. Wireless electro-magnetic method and its application in discovery of marine resources[J]. Shipbuilding of China, 2019, 60(S1): 21–27 (in Chinese).
|
[4] |
卓贤军, 陆建勋. “极低频探地工程”在资源探测和地震预测中的应用与展望[J]. 舰船科学技术, 2010, 32(6): 3–7, 30.
ZHUO X J, LU J X. Application and prospect of WEM to resource exploration and earthquake predication[J]. Ship Science and Technology, 2010, 32(6): 3–7, 30 (in Chinese).
|
[5] |
陆建勋. 极低频与超低频无线电技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2019.
LU J X. WEM and SLF radioactivity[M]. Harbin: Harbin Engineering University Press, 2019 (in Chinese).
|
[6] |
刘勇, 孙景芳. 0.1 Hz~30 kHz频段电波特性及应用研究[J]. 舰船科学技术, 2008, 30(增刊 1): 36–41.
LIU Y, SUN J F. The characteristics and application research of 0.1 Hz-30 kHz radios[J]. Ship Science and Technology, 2008, 30(Supp 1): 36–41 (in Chinese).
|
[7] |
崔玉国, 王元新. 地基ELF线天线在地-电离层壳体中产生的场[J]. 电波科学学报, 2016, 31(5): 851–857.
CUI Y G, WANG Y X. Fields excited by groundsill ELF linear antenna in earth-ionosphere cavity[J]. Chinese Journal of Radio Science, 2016, 31(5): 851–857 (in Chinese).
|
[8] |
郝书吉, 李清亮, 杨巨涛, 等. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析[J]. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
HAO S J, LI Q L, YANG J T, et al. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere[J]. Acta Physica Sinica, 2013, 62(22): 229402 (in Chinese). doi: 10.7498/aps.62.229402
|
[9] |
史伟, 滕敦朋. 基于接地天线的超低频信号全向辐射方法[J]. 现代电子技术, 2012, 35(22): 91–93, 96.
SHI W, TENG D P. Method of SLF signal omni-directional radiation based on grounded antenna[J]. Modern Electronics Technique, 2012, 35(22): 91–93, 96 (in Chinese).
|
[10] |
周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学(技术科学), 2020, 50(1): 69–84. doi: 10.1360/SST-2019-0118
ZHOU Q, YAO F Q, SHI W, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia Sinica Technologica, 2020, 50(1): 69–84 (in Chinese). doi: 10.1360/SST-2019-0118
|
[11] |
崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
|
[12] |
柳超, 翟琦, 谢慧, 等. 极低频发射天线场地等效视电阻率的计算[J]. 西安电子科技大学学报(自然科学版), 2005, 32(4): 584–486, 656.
LIU C, ZHAI Q, XIE H, et al. A calculating method of the effective apparent resistivity for the extremely low frequency transmitting antenna site[J]. Journal of Xidian University (Natural Science), 2005, 32(4): 584–486, 656 (in Chinese).
|
[13] |
ΦDEGARD B, ERNST R. Applying IGCT’s, ABB Application Note 5SHY 42L6500[Z]. 2002.
|
[14] |
李纵. 用于极低频地质探测的CPS-SPWM技术研究[D]. 北京: 中国舰船研究院, 2012.
LI Z. Research on carrie phase shifted SPWM for ELF trasmitter[D]. Beijing: Chinese Ship Research Institute, 2012.
|
[15] |
MWINYIWIWA B, OOI B T, WOLANSKI Z. UPFC using multiconverter operated by phase-shifted triangle carrier SPWM strategy[J]. IEEE Transactions on Industry Applications, 1998, 34(3): 495–500. doi: 10.1109/28.673719
|
[1] | LIU Ruijie, JIA Di, LIN Feichi, LANG Liang. Simulation and experiments of vibration-induced noise of low-frequency magnetic antenna[J]. Chinese Journal of Ship Research, 2023, 18(1): 158-162. DOI: 10.19693/j.issn.1673-3185.02401 |
[2] | YUAN Jianping, SUN Hanbing. Built-in test technology for electro-hydraulic servo-valve amplifier[J]. Chinese Journal of Ship Research, 2021, 16(3): 207-214. DOI: 10.19693/j.issn.1673-3185.01905 |
[3] | FAN Lisi, PAN Xiaodong, WANG Yun. 一种用于电磁脉冲定向辐射的TEM天线设计[J]. Chinese Journal of Ship Research, 2015, 10(2): 116-120. DOI: 10.3969/j.issn.1673-3185.2015.02.022 |
[4] | DENG Feng, DING Fan, ZHENG Shengquan. 通信设备机箱强电磁脉冲耦合预测方法[J]. Chinese Journal of Ship Research, 2015, 10(2): 70-73,98. DOI: 10.3969/j.issn.1673-3185.2015.02.013 |
[5] | LI Jingdong, CHEN Wenjun, CANG Xiaoyu. 一种舰船推力测量装置的结构和电磁兼容性设计[J]. Chinese Journal of Ship Research, 2014, 9(1): 121-126. DOI: 10.3969/j.issn.1673-3185.2014.01.018 |
[6] | SONG Dongan, ZHANG Qi, WEN Dinge, FANG Chonghua. 舰载平面阵天线布置中的电磁兼容性问题及控制措施[J]. Chinese Journal of Ship Research, 2012, 7(3): 15-18,29. DOI: 10.3969/j.issn.1673-3185.2012.03.003 |
[7] | Wang Weiji, Wu Haifeng, Zhao Jingang. 船用比例电磁铁动态性能自动测试系统研究[J]. Chinese Journal of Ship Research, 2011, 6(4): 96-98.103. DOI: 10.3969/j.issn.1673-3185.2011.04.021 |
[8] | Gao Baochun, Peng Ge, Hu Yifeng. 基于矩量法的线天线电磁散射和电磁辐射分析[J]. Chinese Journal of Ship Research, 2011, 6(3): 49-54. DOI: 10.3969/j.issn.1673-3185.2011.03.011 |
[9] | Wu Song, Li Hua. 人工神经网络在舰船火灾探测中的应用[J]. Chinese Journal of Ship Research, 2007, 2(6): 55-58. DOI: 10.3969/j.issn.1673-3185.2007.06.011 |
[10] | Wu Hongbin, Yi Xueqin. 基于HMC1053的低频磁场三维时域检测技术[J]. Chinese Journal of Ship Research, 2007, 2(3): 72-77. DOI: 10.3969/j.issn.1673-3185.2007.03.018 |
1. |
谢慧,万露,岳智彬. 电阻率各向异性架设场地对水平天线的影响. 舰船电子工程. 2024(01): 204-208 .
![]() |