GAO Z Y, ZHANG P, ZHANG B S, et al. Adaptive threshold method for intelligent ship power system equipment[J]. Chinese Journal of Ship Research, 2021, 16(1): 167–173. DOI: 10.19693/j.issn.1673-3185.01951
Citation: GAO Z Y, ZHANG P, ZHANG B S, et al. Adaptive threshold method for intelligent ship power system equipment[J]. Chinese Journal of Ship Research, 2021, 16(1): 167–173. DOI: 10.19693/j.issn.1673-3185.01951

Adaptive threshold method for intelligent ship power system equipment

More Information
  • Received Date: May 05, 2020
  • Revised Date: August 12, 2020
  • Available Online: December 24, 2020
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective   In light of problems such as the untimely condition monitoring and alarm, excessively large threshold bandwidth and inaccurate condition evaluation parameters of intelligent ship power system equipment, an adaptive threshold method is proposed to monitor, alarm and evaluate the conditions of such equipment.
      Method   First, a simulated annealing algorithm is used to optimize the support vector regression (SVR) machine prediction model to simulate the general state characteristic parameters of the power system equipment. Then, after the normal transformation of the modeling residual, combined with the sliding time window, the adaptive threshold model is constructed. Finally, the exhaust gas temperature of the ship's main propulsion diesel engine is selected as the research object for example verification.
      Results   The results show that compared with the traditional fixed threshold, the adaptive threshold model has more compact bandwidth and good adaptability, and can identify abnormal phenomena in power system equipment in advance.
      Conclusion   This method improves the efficiency and threshold accuracy of monitoring and alarm systems, and provides an effective means of early fault diagnosis and a more accurate basis for system status evaluation.
  • [1]
    中国船级社. 智能船舶规范2020[S]. 北京: 中国船级社, 2019: 22–31.

    China Classification Society. Rules for intelligent ships 2020[S]. Beijing: China Classification Society, 2019: 22–31 (in Chinese).
    [2]
    程晶, 那建, 杨会金. 舰船设备振动监测阈值设定方法[J]. 舰船科学技术, 2012, 34(11): 68–70, 116. doi: 10.3404/j.issn.1672-7649.2012.11.015

    CHENG J, NA J, YANG H J. Approach to thresholding vibration monitoring of on-board machinery[J]. Ship Science and Technology, 2012, 34(11): 68–70, 116 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.11.015
    [3]
    姜兴家, 张鹏, 孙晓磊, 等. 船舶动力装置状态参数动态阈值方法[J]. 大连海事大学学报, 2018, 44(4): 28–34.

    JIANG X J, ZHANG P, SUN X L, et al. Dynamic threshold method for state parameters of ship power plant[J]. Journal of Dalian Maritime University, 2018, 44(4): 28–34 (in Chinese).
    [4]
    许小伟, 范世东, 姚玉南. On-line SVM在船舶设备故障预测中的应用[J]. 武汉理工大学学报, 2014, 36(9): 61–67.

    XU X W, FAN S D, YAO Y N. On-line SVM application in ship equipment failure prediction[J]. Journal of Wuhan University of Technology, 2014, 36(9): 61–67 (in Chinese).
    [5]
    张跃文, 孙晓磊, 丁亚委, 等. 船舶动力装置智能诊断系统设计[J]. 中国舰船研究, 2018, 13(6): 140–146. doi: 10.19693/j.issn.1673-3185.01209

    ZHANG Y W, SUN X L, DING Y W, et al. Design of intelligent diagnosis system for ship power equipment[J]. Chinese Journal of Ship Research, 2018, 13(6): 140–146 (in Chinese). doi: 10.19693/j.issn.1673-3185.01209
    [6]
    秦志强. 基于相空间重构的GA-SVR组合模型边坡位移预测研究[D]. 赣州: 江西理工大学, 2016.

    QIN Z Q. Study on GA-SVR combined model for forecasting landside displacement based on hase-space reconstruction[D]. Ganzhou: Jiangxi University of Science and Technology, 2016 (in Chinese).
    [7]
    李冬琴, 王丽铮, 王呈方. 支持向量机回归方法在船型要素建模中的应用[J]. 中国舰船研究, 2007, 2(3): 18–21, 39. doi: 10.3969/j.issn.1673-3185.2007.03.004

    LI D Q, WANG L Z, WANG C F. Method of support vector regression in modeling ship principal particulars[J]. Chinese Journal of Ship Research, 2007, 2(3): 18–21, 39 (in Chinese). doi: 10.3969/j.issn.1673-3185.2007.03.004
    [8]
    谢申汝, 钱彬彬, 杨宝华. 基于LIBSVM的PM2.5浓度预测模型[J]. 洛阳理工学院学报(自然科学版), 2017, 27(2): 9–12.

    XIE S R, QIAN B B, YANG B H. Influence on input parameters of PM2.5 concentration prediction model based on LIBSVM[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2017, 27(2): 9–12 (in Chinese).
    [9]
    吴雨. 基于模拟退火算法的改进极限学习机[J]. 计算机系统应用, 2020, 29(2): 163–168.

    WU Y. Improved extreme learning machine based on simulated annealing algorithm[J]. Computer Systems & Applications, 2020, 29(2): 163–168 (in Chinese).
    [10]
    谭启迪, 薄景山, 常晁瑜, 等. 基于模拟退火算法的设计反应谱标定方法[J]. 地震工程与工程振动, 2020, 40(1): 155–161.

    TAN Q D, BO J S, CHANG Z Y, et al. Calibrating method of seismic design response spectrum based on simulated annealing algorithm[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1): 155–161 (in Chinese).
    [11]
    张维铭, 施雪忠, 楼龙翔. 非正态数据变换为正态数据的方法[J]. 浙江工程学院学报, 2000, 17(3): 204–207.

    ZHAGN W M, SHI X Z, LOU L X. Technique for transforming non-normal data to normality[J]. Journal of Zhejiang Institute of Science and Technology, 2000, 17(3): 204–207 (in Chinese).
    [12]
    SLIFKER J F, SANMUEL S S. The johnson system: selection and parameter estimation[J]. Technometrics, 1980, 22(2): 239–246. doi: 10.1080/00401706.1980.10486139
    [13]
    高莎莎, 申世才, 周超. 航空发动机参数异常诊断自适应阈值确定方法及验证[J]. 燃气涡轮试验与研究, 2018, 31(6): 47–51. doi: 10.3969/j.issn.1672-2620.2018.06.009

    GAO S S, SHEN S C, ZHOU C. Method and verification of adaptive threshold determination for aero-engine parameter abnormality diagnosis[J]. Gas Turbine Experiment and Research, 2018, 31(6): 47–51 (in Chinese). doi: 10.3969/j.issn.1672-2620.2018.06.009
  • Related Articles

    [1]SONG Lifei, WANG Yuqing, PENG Wei, LI Peiyong, LIu Yushan, ZHANG Yongfeng. Hydrodynamic coefficients identification of ship simplified modular model based on support vector regression[J]. Chinese Journal of Ship Research, 2025, 20(1): 65-75. DOI: 10.19693/j.issn.1673-3185.03832
    [2]WANG Qi, HE Qijian, LEI Jiajing. Optimization design of non-pressure tank structure based on simulated-annealing algorithmm[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03456
    [3]ZHU Man, WEN Yuanqiao, SUN Wuqiang, LEI Tao. Extended state observer-based parameter identification of Nomoto model for autonomous vessels[J]. Chinese Journal of Ship Research, 2023, 18(3): 75-85. DOI: 10.19693/j.issn.1673-3185.02552
    [4]ZHANG Tao, GAO Huimin, YU Fanzhen, YANG Kun. Performance decay of stern bearing based on lubrication numerical model and state parameters[J]. Chinese Journal of Ship Research, 2022, 17(6): 133-140, 147. DOI: 10.19693/j.issn.1673-3185.02685
    [5]XU Liang, LI Wei, WANG Liang, GUO Bing. Three-phase balance optimal design of power distribution for ship lightning system based on the improved simulated annealing algorithm[J]. Chinese Journal of Ship Research, 2020, 15(6): 55-59, 65. DOI: 10.19693/j.issn.1673-3185.01837
    [6]HAO Jinyu, ZHANG Xiaobin, YANG Yuanlong. 船用蒸汽蓄热器放汽过程动态特性数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(3): 98-101,107. DOI: 10.3969/j.issn.1673-3185.2015.03.016
    [7]HAO Jinyu, CHI Ying, MA Liqing, ZHANG Cong. 基于Vega Prime的ROV柔性脐带缆动态模拟[J]. Chinese Journal of Ship Research, 2014, 9(5): 115-120. DOI: 10.3969/j.issn.1673-3185.2014.05.019
    [8]YANG Bo, ZHU Xiang, ZHANG Ganbo. 舰船管路阀组单元振动特性分析及结构参数优化研究[J]. Chinese Journal of Ship Research, 2013, 8(2): 90-94. DOI: 10.3969/j.issn.1673-3185.2013.02.016
    [9]Huang Jinfeng, Wan Songlin. 基于设计特征的 FRIENDSHIP船型参数化方法及实现[J]. Chinese Journal of Ship Research, 2012, 7(2): 79-85. DOI: 10.3969/j.issn.1673-3185.2012.02.015
    [10]Zhang Yongsheng, Ma Yunyi, Gao Wei, Tang Ying, Wang Qiang. U型管蒸汽发生器的简化集总参数动态模型[J]. Chinese Journal of Ship Research, 2010, 5(4): 52-55. DOI: 10.3969/j.issn.1673-3185.2010.04.012
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 郑钧,盛善智. 基于多传感器信息融合的船舶动力机械设备故障自动化监测方法. 自动化与仪表. 2024(12): 114-118 .
    2. 刘世伟. 船舶动力推进系统加速性能优化策略. 舰船科学技术. 2023(09): 120-123 .
    3. 韩泽旭. 智能船舶的发展现状及趋势. 船舶物资与市场. 2021(05): 3-4 .
    4. 蔡宝玉,李庆刚. 无线网络的舰船柴油机故障远程诊断. 舰船科学技术. 2021(14): 97-99 .
    5. 高泽宇,张鹏,曹乐乐,张跃文,孙培廷. 基于自适应阈值的船舶柴油机状态监控. 船舶工程. 2021(12): 172-177 .

    Other cited types(3)

Catalog

    Article views (806) PDF downloads (134) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return