Citation: | GAO Z Y, ZHANG P, ZHANG B S, et al. Adaptive threshold method for intelligent ship power system equipment[J]. Chinese Journal of Ship Research, 2021, 16(1): 167–173. DOI: 10.19693/j.issn.1673-3185.01951 |
[1] |
中国船级社. 智能船舶规范2020[S]. 北京: 中国船级社, 2019: 22–31.
China Classification Society. Rules for intelligent ships 2020[S]. Beijing: China Classification Society, 2019: 22–31 (in Chinese).
|
[2] |
程晶, 那建, 杨会金. 舰船设备振动监测阈值设定方法[J]. 舰船科学技术, 2012, 34(11): 68–70, 116. doi: 10.3404/j.issn.1672-7649.2012.11.015
CHENG J, NA J, YANG H J. Approach to thresholding vibration monitoring of on-board machinery[J]. Ship Science and Technology, 2012, 34(11): 68–70, 116 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.11.015
|
[3] |
姜兴家, 张鹏, 孙晓磊, 等. 船舶动力装置状态参数动态阈值方法[J]. 大连海事大学学报, 2018, 44(4): 28–34.
JIANG X J, ZHANG P, SUN X L, et al. Dynamic threshold method for state parameters of ship power plant[J]. Journal of Dalian Maritime University, 2018, 44(4): 28–34 (in Chinese).
|
[4] |
许小伟, 范世东, 姚玉南. On-line SVM在船舶设备故障预测中的应用[J]. 武汉理工大学学报, 2014, 36(9): 61–67.
XU X W, FAN S D, YAO Y N. On-line SVM application in ship equipment failure prediction[J]. Journal of Wuhan University of Technology, 2014, 36(9): 61–67 (in Chinese).
|
[5] |
张跃文, 孙晓磊, 丁亚委, 等. 船舶动力装置智能诊断系统设计[J]. 中国舰船研究, 2018, 13(6): 140–146. doi: 10.19693/j.issn.1673-3185.01209
ZHANG Y W, SUN X L, DING Y W, et al. Design of intelligent diagnosis system for ship power equipment[J]. Chinese Journal of Ship Research, 2018, 13(6): 140–146 (in Chinese). doi: 10.19693/j.issn.1673-3185.01209
|
[6] |
秦志强. 基于相空间重构的GA-SVR组合模型边坡位移预测研究[D]. 赣州: 江西理工大学, 2016.
QIN Z Q. Study on GA-SVR combined model for forecasting landside displacement based on hase-space reconstruction[D]. Ganzhou: Jiangxi University of Science and Technology, 2016 (in Chinese).
|
[7] |
李冬琴, 王丽铮, 王呈方. 支持向量机回归方法在船型要素建模中的应用[J]. 中国舰船研究, 2007, 2(3): 18–21, 39. doi: 10.3969/j.issn.1673-3185.2007.03.004
LI D Q, WANG L Z, WANG C F. Method of support vector regression in modeling ship principal particulars[J]. Chinese Journal of Ship Research, 2007, 2(3): 18–21, 39 (in Chinese). doi: 10.3969/j.issn.1673-3185.2007.03.004
|
[8] |
谢申汝, 钱彬彬, 杨宝华. 基于LIBSVM的PM2.5浓度预测模型[J]. 洛阳理工学院学报(自然科学版), 2017, 27(2): 9–12.
XIE S R, QIAN B B, YANG B H. Influence on input parameters of PM2.5 concentration prediction model based on LIBSVM[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2017, 27(2): 9–12 (in Chinese).
|
[9] |
吴雨. 基于模拟退火算法的改进极限学习机[J]. 计算机系统应用, 2020, 29(2): 163–168.
WU Y. Improved extreme learning machine based on simulated annealing algorithm[J]. Computer Systems & Applications, 2020, 29(2): 163–168 (in Chinese).
|
[10] |
谭启迪, 薄景山, 常晁瑜, 等. 基于模拟退火算法的设计反应谱标定方法[J]. 地震工程与工程振动, 2020, 40(1): 155–161.
TAN Q D, BO J S, CHANG Z Y, et al. Calibrating method of seismic design response spectrum based on simulated annealing algorithm[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1): 155–161 (in Chinese).
|
[11] |
张维铭, 施雪忠, 楼龙翔. 非正态数据变换为正态数据的方法[J]. 浙江工程学院学报, 2000, 17(3): 204–207.
ZHAGN W M, SHI X Z, LOU L X. Technique for transforming non-normal data to normality[J]. Journal of Zhejiang Institute of Science and Technology, 2000, 17(3): 204–207 (in Chinese).
|
[12] |
SLIFKER J F, SANMUEL S S. The johnson system: selection and parameter estimation[J]. Technometrics, 1980, 22(2): 239–246. doi: 10.1080/00401706.1980.10486139
|
[13] |
高莎莎, 申世才, 周超. 航空发动机参数异常诊断自适应阈值确定方法及验证[J]. 燃气涡轮试验与研究, 2018, 31(6): 47–51. doi: 10.3969/j.issn.1672-2620.2018.06.009
GAO S S, SHEN S C, ZHOU C. Method and verification of adaptive threshold determination for aero-engine parameter abnormality diagnosis[J]. Gas Turbine Experiment and Research, 2018, 31(6): 47–51 (in Chinese). doi: 10.3969/j.issn.1672-2620.2018.06.009
|
[1] | SONG Lifei, WANG Yuqing, PENG Wei, LI Peiyong, LIu Yushan, ZHANG Yongfeng. Hydrodynamic coefficients identification of ship simplified modular model based on support vector regression[J]. Chinese Journal of Ship Research, 2025, 20(1): 65-75. DOI: 10.19693/j.issn.1673-3185.03832 |
[2] | WANG Qi, HE Qijian, LEI Jiajing. Optimization design of non-pressure tank structure based on simulated-annealing algorithmm[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03456 |
[3] | ZHU Man, WEN Yuanqiao, SUN Wuqiang, LEI Tao. Extended state observer-based parameter identification of Nomoto model for autonomous vessels[J]. Chinese Journal of Ship Research, 2023, 18(3): 75-85. DOI: 10.19693/j.issn.1673-3185.02552 |
[4] | ZHANG Tao, GAO Huimin, YU Fanzhen, YANG Kun. Performance decay of stern bearing based on lubrication numerical model and state parameters[J]. Chinese Journal of Ship Research, 2022, 17(6): 133-140, 147. DOI: 10.19693/j.issn.1673-3185.02685 |
[5] | XU Liang, LI Wei, WANG Liang, GUO Bing. Three-phase balance optimal design of power distribution for ship lightning system based on the improved simulated annealing algorithm[J]. Chinese Journal of Ship Research, 2020, 15(6): 55-59, 65. DOI: 10.19693/j.issn.1673-3185.01837 |
[6] | HAO Jinyu, ZHANG Xiaobin, YANG Yuanlong. 船用蒸汽蓄热器放汽过程动态特性数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(3): 98-101,107. DOI: 10.3969/j.issn.1673-3185.2015.03.016 |
[7] | HAO Jinyu, CHI Ying, MA Liqing, ZHANG Cong. 基于Vega Prime的ROV柔性脐带缆动态模拟[J]. Chinese Journal of Ship Research, 2014, 9(5): 115-120. DOI: 10.3969/j.issn.1673-3185.2014.05.019 |
[8] | YANG Bo, ZHU Xiang, ZHANG Ganbo. 舰船管路阀组单元振动特性分析及结构参数优化研究[J]. Chinese Journal of Ship Research, 2013, 8(2): 90-94. DOI: 10.3969/j.issn.1673-3185.2013.02.016 |
[9] | Huang Jinfeng, Wan Songlin. 基于设计特征的 FRIENDSHIP船型参数化方法及实现[J]. Chinese Journal of Ship Research, 2012, 7(2): 79-85. DOI: 10.3969/j.issn.1673-3185.2012.02.015 |
[10] | Zhang Yongsheng, Ma Yunyi, Gao Wei, Tang Ying, Wang Qiang. U型管蒸汽发生器的简化集总参数动态模型[J]. Chinese Journal of Ship Research, 2010, 5(4): 52-55. DOI: 10.3969/j.issn.1673-3185.2010.04.012 |