WANG X M, LIU J, CHEN C H, et al. Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading[J]. Chinese Journal of Ship Research, 2021, 16(2): 116–124. DOI: 10.19693/j.issn.1673-3185.01833
Citation: WANG X M, LIU J, CHEN C H, et al. Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading[J]. Chinese Journal of Ship Research, 2021, 16(2): 116–124. DOI: 10.19693/j.issn.1673-3185.01833

Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading

More Information
  • Received Date: November 25, 2019
  • Revised Date: January 11, 2020
  • Available Online: December 07, 2020
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   A simulation of steel/polyurea composite structures under close-range air blast loading was conducted, in order to study the improvement mechanism and analyze the influence of the polyurea backing layer on the blast-resistant performance of steel plates.
      Methods  The deformation/failure process and energy absorption mechanism of steel/polyurea composite structures under close-range air blast load-ing were numerically investigated, and the rationality and effectiveness of the numerical investigation were verified by related experiments. On this basis, the influence of the thickness matching and strength matching between the front steel plate and the back polyurea layer on the deformation/failure and energy absorption of the structure were analyzed.
      Results  The results show that the polyurea layer had two caving phenomena under blast loading, and the kinetic energy of the fragment was dominant in the total absorption energy of the polyurea layer. With the increase of the thickness matching between steel plate and polyurea layer, the deformation of the steel plate initially decreased, and then increased. With the increase of strength matching, the deformation of the front plate, and the energy absorption ratio of polyurea decreased monotonically. The kinetic energy of the fragment produced by caving was the main energy absorption mode of the polyurea layer. Under conditions of constant overall surface density, the steel/polyurea composite structure has the optimal thickness matching of anti-explosion performance. The increase of strength matching will decrease the energy absorption ratio of the polyurea layer, and the overall blast-resistant capacity will be improved.
      Conclusions   The research in this paper serves as a valuable reference for the future study of the blast resistance capacity of polyurea-coated 304 stainless steel plates.
  • [1]
    蒋国岩, 宋敬利, 周华, 等. 舰船模型海上抗爆试验[J]. 噪声与振动控制, 2012, 32(6): 26–29.

    JIANG G Y, SONG J L, ZHOU H, et al. Study on antishock test of ship model in the sea[J]. Noise and Vibration Control, 2012, 32(6): 26–29 (in Chinese).
    [2]
    甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟[J]. 兵工学报, 2009, 30(增刊 2): 15–18.

    GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer[J]. Acta Armamentarii, 2009, 30(Supp 2): 15–18 (in Chinese).
    [3]
    翟文, 戴平仁, 何金迎, 等. 聚脲-钢板夹层结构抗爆性能研究[J]. 兵工自动化, 2018, 37(10): 65–69.

    ZHAI W, DAI P R, HE J Y, et al. Study on anti-detonation performance of polyurea steel sandwich structure[J]. Ordnance Industry Automation, 2018, 37(10): 65–69 (in Chinese).
    [4]
    赵庆贵, 于明磊, 姜言刚, 等. 聚脲涂料在多领域的应用[J]. 弹性体, 2018, 28(6): 74–76. doi: 10.3969/j.issn.1005-3174.2018.06.016

    ZHAO Q G, YU M L, JIANG Y G, et al. Application of polyurea coating in the multi-field[J]. China Elastomerics, 2018, 28(6): 74–76 (in Chinese). doi: 10.3969/j.issn.1005-3174.2018.06.016
    [5]
    LI Y Q, CHEN C H, HOU H L, et al. The influence of spraying strategy on the dynamic response of polyurea-coated metal plates to localized air blast loading: experimental investigations[J]. Polymers, 2019, 11(11): 1888. doi: 10.3390/polym11111888
    [6]
    赵鹏铎, 张鹏, 张磊, 等. 聚脲涂覆钢板结构抗爆性能试验研究[J]. 北京理工大学学报, 2018, 28(2): 118–123.

    ZHAO P D, ZHANG P, ZHANG L, et al. Experimental investigation on the performance of polyurea-coated structure under blast loads[J]. Transactions of Beijing Institute of Technology, 2018, 28(2): 118–123 (in Chinese).
    [7]
    甘云丹. 弹性体涂覆钢板水下爆炸冲击响应特性[D]. 宁波: 宁波大学, 2009.

    GAN Y D. Elastomer-coted steel plate underwater explosion impact response of characteristic[D]. Ningbo: Ningbo University, 2009(in Chinese).
    [8]
    王殿玺, 郭香华, 张庆明. 聚脲涂覆钢板在爆炸载荷作用下的动态响应[J]. 高压物理学报, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650

    WANG D X, GUO X H, ZHANG Q M. Dynamic response of polyurea coated steel plate under blast loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024103 (in Chinese). doi: 10.11858/gywlxb.20180650
    [9]
    ACKLAND K, ANDERSON C, NGO T D. Deformation of polyurea-coated steel plates under localised blast loading[J]. International Journal of Impact Engineering, 2013, 51: 13–22. doi: 10.1016/j.ijimpeng.2012.08.005
    [10]
    HOU H L, CHEN C H, CHENG Y S, et al. Effect of structural configuration on air blast resistance of polyurea-coated composite steel plates: experimental studies[J]. Materials & Design, 2019, 182: 108049.
    [11]
    李星星. 304不锈钢本构模型参数识别研究[D]. 武汉: 华中科技大学, 2012.

    LI X X. Research on the constitutive model parameters identification of 304 stainless steel[D]. Wuhan: Huazhong University of Science and Technology, 2012(in Chinese).
    [12]
    陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29(25): 118–120, 124.

    CHEN J Z, HUANG M X, WANG X R, et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Review, 2015, 29(25): 118–120, 124 (in Chinese).
    [13]
    CHENG D S, HUNG C W, PI S J. Numerical simulation of near-field explosion[J]. Journal of Applied Science and Engineering, 2013, 16(1): 61–67.
  • Related Articles

    [1]XIAO Wenyong, HUANG Ni. 锥环柱结构总体匹配强度性能研究[J]. Chinese Journal of Ship Research, 2015, 10(4): 65-70. DOI: 10.3969/j.issn.1673-3185.2015.04.010
    [2]ZHANG Nu. 水下爆炸气泡作用下船体总纵强度估算方法[J]. Chinese Journal of Ship Research, 2014, 9(6): 14-18,25. DOI: 10.3969/j.issn.1673-3185.2014.06.003
    [3]GAO Song, XU Li, Nigel BARLTROP, WANG Dazheng. 基于奇异强度理论的疲劳特性评估方法[J]. Chinese Journal of Ship Research, 2014, 9(5): 60-68,76. DOI: 10.3969/j.issn.1673-3185.2014.05.011
    [4]YU Yao, WANG Wei. 夹层板复杂弯曲极限强度性能研究[J]. Chinese Journal of Ship Research, 2014, 9(3): 76-82. DOI: 10.3969/j.issn.1673-3185.2014.03.011
    [5]DING Deyong, WANG Hu, LING Hao, HE Shutao. I型金属夹层结构连接构件强度特性研究及灵敏度分析[J]. Chinese Journal of Ship Research, 2014, 9(2): 22-29. DOI: 10.3969/j.issn.1673-3185.2014.02.005
    [6]Huang Yi, Xu Hui, Jiang Zhifang. 大侧斜螺旋桨强度校核探讨[J]. Chinese Journal of Ship Research, 2010, 5(5): 44-48. DOI: 10.3969/j.issn.1673-3185.2010.05.009
    [7]Zheng Jie, Xie Wei, Yang Long, Hu Yaowu. 双体船连接桥结构强度的简化计算[J]. Chinese Journal of Ship Research, 2010, 5(4): 36-39. DOI: 10.3969/j.issn.1673-3185.2010.04.008
    [8]Guo Shaojing, Xu Bin, Cao Yu. 舰用设备与船体一体化强度评估方法研究[J]. Chinese Journal of Ship Research, 2010, 5(2): 29-36. DOI: 10.3969/j.issn.1673-3185.2010.02.006
    [9]Zheng lie, Xie Wei, Luo Wei, Hu Yaowu, Yang Long. 穿浪双体船横向强度与扭转强度的有限元计算[J]. Chinese Journal of Ship Research, 2010, 5(1): 14-18. DOI: 10.3969/j.issn.1673-3185.2010.01.004
    [10]He Shuangyuan, Wu WeiGuo, Gan Jin. 液化天然气船船体极限强度分析[J]. Chinese Journal of Ship Research, 2008, 3(6): 30-33. DOI: 10.3969/j.issn.1673-3185.2008.06.007
  • Cited by

    Periodical cited type(14)

    1. 徐赵威,汪维,李奕硕,张仲昊,张丛琨. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能. 爆炸与冲击. 2025(03): 66-78 .
    2. 金书含,高晓宇,梁薇,孙凤一,任鹤. 聚脲弹性体在高端领域的研究进展. 弹性体. 2024(01): 86-92 .
    3. 刘保华,徐文龙,王成,杨同会,葛萌. 接触爆炸下聚脲涂层增强钢板的抗爆性能. 兵工学报. 2024(05): 1637-1647 .
    4. 张伟,王子聪,高永红,辛凯,张昭,段亚鹏. 冲击荷载作用下钢结构工业厂房墙面板加固技术研究. 河南科技大学学报(自然科学版). 2023(01): 68-76+83+8 .
    5. 袁璐,冷超群. 建筑外墙钢板涂层的抗冲击性能仿真研究. 兵器材料科学与工程. 2023(01): 74-78 .
    6. 王逸平,汪维,杨建超,汪剑辉,王幸. 钢板/POZD复合结构在近距空爆载荷下的抗爆性能. 高压物理学报. 2023(01): 74-85 .
    7. 吴迪,刘涛,石秉良,焦丽娟,陶治国. 地雷爆炸载荷下防爆复合结构的动态响应研究. 车辆与动力技术. 2023(01): 1-5 .
    8. 杨光瑞,汪维,杨建超,汪剑辉,王幸. POZD涂覆波纹钢加固钢筋混凝土板抗爆性能. 兵工学报. 2023(05): 1374-1383 .
    9. 岳宝兵,金翰呈,李雄姿,杨文涛,李小双,肖定军. 聚脲涂覆钢板复合结构抗爆性能研究. 化工矿物与加工. 2023(06): 6-12 .
    10. 李述涛,魏万里,陈叶青,陈龙明. 基于体积填充法的弹体侵爆一体毁伤效应研究. 振动与冲击. 2023(12): 194-204 .
    11. 姜策,肖李军,宋卫东. 聚脲/铝分层复合结构的抗爆性能研究. 高压物理学报. 2023(03): 110-120 .
    12. 方志强,吕平,王旭,黄微波,张锐,李鹏. 聚脲涂层防爆罐抗爆性能研究. 涂料工业. 2022(02): 71-77+88 .
    13. 毛柳伟,万昌召,陈长海,程远胜. 低硬度聚脲/钢板复合结构抗高速破片侵彻机理试验. 北京理工大学学报. 2022(10): 1017-1025 .
    14. 肖颍杰,石少卿,刘盈丰,陈首,廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究. 材料导报. 2022(23): 220-226 .

    Other cited types(9)

Catalog

    Article views (734) PDF downloads (93) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return