LIANG X, CHEN J T, WANG R L, et al. The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion[J]. Chinese Journal of Ship Research, 2020, 15(6): 128–136. DOI: 10.19693/j.issn.1673-3185.01826
Citation: LIANG X, CHEN J T, WANG R L, et al. The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion[J]. Chinese Journal of Ship Research, 2020, 15(6): 128–136. DOI: 10.19693/j.issn.1673-3185.01826

The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion

More Information
  • Received Date: November 15, 2019
  • Revised Date: February 25, 2020
  • Available Online: December 07, 2020
© 2020 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  To identify and quantify uncertain factors in the modeling and simulation of ships suffering a non-contact underwater explosion, the influence of high dimensional random variables on the output of the system is studied.
      Methods  Following statistical characteristics and engineering knowledge, the normal distribution log is used to describe uncertain physical quantity, and Beta distribution is utilized to depict uncertain empirical parameters. Rosenblatt transformation is explored to transform these correlated random variables into Gaussian variables, satisfying identical and independent distribution. There are a variety of uncertain factors due to the complexity of the model. The computational efficiency is greatly improved when homogeneous Wiener chaos with quadratic adaptive basis function is used to tackle improbability propagation of these input uncertainties. Concerns over a spring device in the deck, expectation, standard deviation, confidence interval, and the probability density function of the quantity of impulsive is presented via the proposed method.
      Results  Oscillation of the ship always exists after the arrival of a shock wave. The oscillation of the standard deviation is much more forceful than the mean value.
      Conclusions  The result can be used to predict the impact of a detonation and provide guidance for the reinforcement ability of the ship.
  • [1]
    COLE R H. Underwater explosion[M]. New Jersey: Princeton University Press, 1948.
    [2]
    GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. doi: 10.1121/1.1458590
    [3]
    SHIN Y S. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers & Structures, 2004, 82(23/24/25/26): 2211–2219.
    [4]
    姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究[J]. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701

    YAO X L, YE X, ZHANG A M. Cavitation bubble in compressible fluid subjected to traveling wave[J]. Acta Physica Sinica, 2013, 62(24): 244701 (in Chinese). doi: 10.7498/aps.62.244701
    [5]
    徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用[J]. 中国舰船研究, 2017, 12(3): 64–74. doi: 10.3969/j.issn.1673-3185.2017.03.010

    XU W Z, WU W G. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64–74 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.03.010
    [6]
    张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019, 14(3): 1–13.

    ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13 (in Chinese).
    [7]
    DAS S, RHANEM R. Uncertainty analysis in ship shock modeling and simulation[C]//Proceedings of 74th Shock and Vibration Symposium. San Diego, CA: [s.n.], 2003.
    [8]
    SHIN Y S, SANTIAGO L D. Surface ship shock modeling and simulation: two-dimensional analysis[J]. Shock and Vibration, 1998, 5(2): 129–137. doi: 10.1155/1998/967539
    [9]
    SLOAN J, SUN Y W, CARRIGAN C. Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty[J]. Journal of Environmental Radioactivity, 2016, 155-156: 130–139. doi: 10.1016/j.jenvrad.2016.02.022
    [10]
    梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认[J]. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401

    LIANG X, WANG R L. Sensitivity analysis and validation of detonation computational fluid dynamics model[J]. Acta Physica Sinica, 2017, 66(11): 116401 (in Chinese). doi: 10.7498/aps.66.116401
    [11]
    KOZMENKOV Y, KLIEM S, ROHDE U. Validation and verification of the coupled neutron kinetic/thermal hydraulic system code DYN3D/ATHLET[J]. Annals of Nuclear Energy, 2015, 84(1): 153–165.
    [12]
    LIANG X, WANG R L. Verification and validation of detonation modeling[J]. Defence Technology, 2019, 15(3): 398–408. doi: 10.1016/j.dt.2018.11.005
    [13]
    PEDERSON C, BROWN B, MORGAN N. The Sedov blast wave as a radial piston verification test[J]. Journal of Verification, Validation and Uncertainty Quantification, 2016, 1(3): 031001. doi: 10.1115/1.4033652
    [14]
    HU X Z, CHEN X Q, LATTARULO V, et al. Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design[J]. AIAA Journal, 2016, 54(5): 1732–1741. doi: 10.2514/1.J054627
    [15]
    HU X Z, CHEN X Q, PARKS G T, et al. Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles[J]. Progress in Aerospace Sciences, 2016, 86: 20–27. doi: 10.1016/j.paerosci.2016.07.004
    [16]
    邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279–288. doi: 10.3321/j.issn:1000-0992.2007.02.011

    DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279–288 (in Chinese). doi: 10.3321/j.issn:1000-0992.2007.02.011
    [17]
    张涵信, 查俊. 关于CFD验证确认中的不确定度和真值估算[J]. 空气动力学学报, 2010, 28(1): 39–45. doi: 10.3969/j.issn.0258-1825.2010.01.006

    ZHANG H X, ZHA J. The uncertainty and truth-value assessment in the verification and validation of CFD[J]. Acta Aerodynamica Sinica, 2010, 28(1): 39–45 (in Chinese). doi: 10.3969/j.issn.0258-1825.2010.01.006
    [18]
    王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学: 技术科学, 2010, 53(10): 2853–2861. doi: 10.1007/s11431-010-4097-y

    WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Scientia Sinica Technological, 2010, 53(10): 2853–2861. doi: 10.1007/s11431-010-4097-y
    [19]
    汤涛, 周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45(7): 891–928. doi: 10.1360/N012014-00218

    TANG T, ZHOU T. Recent developments in high order numerical methods for uncertainty quantification[J]. Scientia Sinica Mathematica, 2015, 45(7): 891–928 (in Chinese). doi: 10.1360/N012014-00218
    [20]
    王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45(6): 723–738. doi: 10.1360/N012014-00115

    WANG R L, JIANG S. Mathematical methods for uncertainty quantification in nonlinear multi-physics systems and their numerical simulations[J]. Scientia Sinica Mathematica, 2015, 45(6): 723–738 (in Chinese). doi: 10.1360/N012014-00115
    [21]
    梁霄, 王瑞利. 基于自适应和投影Wiener混沌的圆筒实验不确定度量化[J]. 爆炸与冲击, 2019, 39(4): 041408.

    LIANG X, WANG R L. Uncertainty quantification of cylindrical test through Wiener chaos with basis adaptation and projection[J]. Explosion and Shock Waves, 2019, 39(4): 041408 (in Chinese).
    [22]
    GHANEM R G, SPANOS P D. Stochastic Finite Elements: A Spectral Approach[M]. New York: Springer, 1991.
    [23]
    XIU D B, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619–644. doi: 10.1137/S1064827501387826
    [24]
    刘全, 王瑞利, 林忠. 非嵌入式多项式混沌方法在拉氏计算中的应用[J]. 固体力学学报, 2013, 33(增刊 1): 224–233.

    LIU Q, WANG R L, LIN Z. Uncertainty quantification Lagrangian computational using non-intrusive polynomial chaos[J]. Chinese Journal of Solid Mechanics, 2013, 33(Supp 1): 224–233 (in Chinese).
    [25]
    PRICE R S. Similitude equations for explosives fired underwater[R]. Washington DC: Naval Surface Warfare Center, 1979.
    [26]
    ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470–472. doi: 10.1214/aoms/1177729394
    [27]
    LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos[J]. International Journal for Uncertainty Quantification, 2020, 4(1): 83–100.
    [28]
    JANSON S. Gaussian Hilbert spaces[M]. Cambridge: Cambridge University Press, 1997.
  • Other Related Supplements

Catalog

    Article views (489) PDF downloads (73) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return