Citation: | LIANG X, CHEN J T, WANG R L, et al. The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion[J]. Chinese Journal of Ship Research, 2020, 15(6): 128–136. DOI: 10.19693/j.issn.1673-3185.01826 |
[1] |
COLE R H. Underwater explosion[M]. New Jersey: Princeton University Press, 1948.
|
[2] |
GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. doi: 10.1121/1.1458590
|
[3] |
SHIN Y S. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers & Structures, 2004, 82(23/24/25/26): 2211–2219.
|
[4] |
姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究[J]. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
YAO X L, YE X, ZHANG A M. Cavitation bubble in compressible fluid subjected to traveling wave[J]. Acta Physica Sinica, 2013, 62(24): 244701 (in Chinese). doi: 10.7498/aps.62.244701
|
[5] |
徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用[J]. 中国舰船研究, 2017, 12(3): 64–74. doi: 10.3969/j.issn.1673-3185.2017.03.010
XU W Z, WU W G. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64–74 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.03.010
|
[6] |
张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019, 14(3): 1–13.
ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13 (in Chinese).
|
[7] |
DAS S, RHANEM R. Uncertainty analysis in ship shock modeling and simulation[C]//Proceedings of 74th Shock and Vibration Symposium. San Diego, CA: [s.n.], 2003.
|
[8] |
SHIN Y S, SANTIAGO L D. Surface ship shock modeling and simulation: two-dimensional analysis[J]. Shock and Vibration, 1998, 5(2): 129–137. doi: 10.1155/1998/967539
|
[9] |
SLOAN J, SUN Y W, CARRIGAN C. Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty[J]. Journal of Environmental Radioactivity, 2016, 155-156: 130–139. doi: 10.1016/j.jenvrad.2016.02.022
|
[10] |
梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认[J]. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
LIANG X, WANG R L. Sensitivity analysis and validation of detonation computational fluid dynamics model[J]. Acta Physica Sinica, 2017, 66(11): 116401 (in Chinese). doi: 10.7498/aps.66.116401
|
[11] |
KOZMENKOV Y, KLIEM S, ROHDE U. Validation and verification of the coupled neutron kinetic/thermal hydraulic system code DYN3D/ATHLET[J]. Annals of Nuclear Energy, 2015, 84(1): 153–165.
|
[12] |
LIANG X, WANG R L. Verification and validation of detonation modeling[J]. Defence Technology, 2019, 15(3): 398–408. doi: 10.1016/j.dt.2018.11.005
|
[13] |
PEDERSON C, BROWN B, MORGAN N. The Sedov blast wave as a radial piston verification test[J]. Journal of Verification, Validation and Uncertainty Quantification, 2016, 1(3): 031001. doi: 10.1115/1.4033652
|
[14] |
HU X Z, CHEN X Q, LATTARULO V, et al. Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design[J]. AIAA Journal, 2016, 54(5): 1732–1741. doi: 10.2514/1.J054627
|
[15] |
HU X Z, CHEN X Q, PARKS G T, et al. Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles[J]. Progress in Aerospace Sciences, 2016, 86: 20–27. doi: 10.1016/j.paerosci.2016.07.004
|
[16] |
邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279–288. doi: 10.3321/j.issn:1000-0992.2007.02.011
DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279–288 (in Chinese). doi: 10.3321/j.issn:1000-0992.2007.02.011
|
[17] |
张涵信, 查俊. 关于CFD验证确认中的不确定度和真值估算[J]. 空气动力学学报, 2010, 28(1): 39–45. doi: 10.3969/j.issn.0258-1825.2010.01.006
ZHANG H X, ZHA J. The uncertainty and truth-value assessment in the verification and validation of CFD[J]. Acta Aerodynamica Sinica, 2010, 28(1): 39–45 (in Chinese). doi: 10.3969/j.issn.0258-1825.2010.01.006
|
[18] |
王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学: 技术科学, 2010, 53(10): 2853–2861. doi: 10.1007/s11431-010-4097-y
WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Scientia Sinica Technological, 2010, 53(10): 2853–2861. doi: 10.1007/s11431-010-4097-y
|
[19] |
汤涛, 周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45(7): 891–928. doi: 10.1360/N012014-00218
TANG T, ZHOU T. Recent developments in high order numerical methods for uncertainty quantification[J]. Scientia Sinica Mathematica, 2015, 45(7): 891–928 (in Chinese). doi: 10.1360/N012014-00218
|
[20] |
王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45(6): 723–738. doi: 10.1360/N012014-00115
WANG R L, JIANG S. Mathematical methods for uncertainty quantification in nonlinear multi-physics systems and their numerical simulations[J]. Scientia Sinica Mathematica, 2015, 45(6): 723–738 (in Chinese). doi: 10.1360/N012014-00115
|
[21] |
梁霄, 王瑞利. 基于自适应和投影Wiener混沌的圆筒实验不确定度量化[J]. 爆炸与冲击, 2019, 39(4): 041408.
LIANG X, WANG R L. Uncertainty quantification of cylindrical test through Wiener chaos with basis adaptation and projection[J]. Explosion and Shock Waves, 2019, 39(4): 041408 (in Chinese).
|
[22] |
GHANEM R G, SPANOS P D. Stochastic Finite Elements: A Spectral Approach[M]. New York: Springer, 1991.
|
[23] |
XIU D B, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619–644. doi: 10.1137/S1064827501387826
|
[24] |
刘全, 王瑞利, 林忠. 非嵌入式多项式混沌方法在拉氏计算中的应用[J]. 固体力学学报, 2013, 33(增刊 1): 224–233.
LIU Q, WANG R L, LIN Z. Uncertainty quantification Lagrangian computational using non-intrusive polynomial chaos[J]. Chinese Journal of Solid Mechanics, 2013, 33(Supp 1): 224–233 (in Chinese).
|
[25] |
PRICE R S. Similitude equations for explosives fired underwater[R]. Washington DC: Naval Surface Warfare Center, 1979.
|
[26] |
ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470–472. doi: 10.1214/aoms/1177729394
|
[27] |
LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos[J]. International Journal for Uncertainty Quantification, 2020, 4(1): 83–100.
|
[28] |
JANSON S. Gaussian Hilbert spaces[M]. Cambridge: Cambridge University Press, 1997.
|