LIU J L, YANG F, MA F, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45–50. DOI: 10.19693/j.issn.1673-3185.01780
Citation: LIU J L, YANG F, MA F, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45–50. DOI: 10.19693/j.issn.1673-3185.01780

Method system of navigation function test and verification for intelligent ship

More Information
  • Received Date: September 21, 2019
  • Revised Date: March 17, 2020
  • Available Online: December 07, 2020
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The core of the technology development for intelligent ships is to construct a complete software and hardware system from decision-making to autonomous control, which realizes the evolution from manual operation to intelligent navigation. The development of software and hardware systems are inseparable from comprehensive testing procedures and standards. This paper first reviews the latest in existing domestic and foreign technology test fields for intelligent ships. Afterward, ship performance, energy efficiency, information, and intelligence are proposed as objectives for intelligent navigation functional testing for intelligent ships. Finally, a system methodology of the virtual simulation tests, model-scale tests, and full-scale tests for the navigation function of intelligent ships is proposed.
  • [1]
    严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807–817.

    YAN X P, LIU C G. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807–817 (in Chinese).
    [2]
    吴青, 王乐, 刘佳仑. 自主水面货船研究现状与展望[J]. 智能系统学报, 2019, 14(1): 57–70.

    WU Q, WANG L, LIU J L. Research status and prospects of autonomous surface cargo ships[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 57–70 (in Chinese).
    [3]
    International Maritime Organization. IMO takes first steps to address autonomous ships[EB/OL]. [2018-05-25]. http://www.imo.org/en/MediaCentre/PressBriefings/Pages/08-MSC-99-MASS-scoping.aspx.
    [4]
    LI L, HUANG W L, LIU Y H, et al. Intelligence testing for autonomous vehicles: A new approach[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 158–166. doi: 10.1109/TIV.2016.2608003
    [5]
    LI L, LIN Y L, ZHENG N N, et al. Artificial intelligence test: a case study of intelligent vehicles[J]. Artificial Intelligence Review, 2018, 50(3): 441. doi: 10.1007/s10462-018-9631-5
    [6]
    LI L, WANG X, WANG K F, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. doi: 10.1126/scirobotics.aaw4106
    [7]
    SILVERAJAN B, OCAK M, NAGEL B. Cybersecurity attacks and defences for unmanned smart ships[C]//2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Halifax, NS, Canada: IEEE, 2018: 15–20.
    [8]
    MSC 99/INF. 13. Establishing international test area "Jaakonmeri" for autonomous vessels [R]. Finland: MSC, 2018.
    [9]
    MSC 100/5/2. Interim guidelines for MASS trials[R]. Norway and BIMCO: MSC.
    [10]
    MSC 100/5/3. Proposals for the development of interim guidelines for maritime autonomous surface ships (MASS) trials[R]. Republic of Korea,MSC.
    [11]
    谢综文. 我国首个智能航运技术创新与综合实验基地启动[J]. 广东交通, 2018(3): 53.

    XIE Z W. China's first smart shipping technology innovation and comprehensive experimental base launched[J]. Transportation of Guangdong, 2018(3): 53 (in Chinese).
    [12]
    贺辞. CCS《智能船舶规范》六大功能模块要求[J]. 中国船检, 2016(3): 84–85. doi: 10.3969/j.issn.1009-2005.2016.03.018

    HE C. Requirements of six functional modules for CCS "rules for intelligent ships"[J]. China Ship Survey, 2016(3): 84–85 (in Chinese). doi: 10.3969/j.issn.1009-2005.2016.03.018
    [13]
    龙洋, 王猛. 动力定位船舶模糊解耦定速航行控制算法[J]. 中国舰船研究, 2019, 14(3): 152–157.

    LONG Y, WANG M. Fuzzy decoupling constant-velocity navigation control algorithm for dynamic positioning ship[J]. Chinese Journal of Ship Research, 2019, 14(3): 152–157 (in Chinese).
    [14]
    曹诗杰, 曾凡明, 陈于涛. 无人水面艇航向航速协同控制方法[J]. 中国舰船研究, 2015, 10(6): 74–80. doi: 10.3969/j.issn.1673-3185.2015.06.011

    CAO S J, ZENG F M, CHEN Y T. The course and speed cooperative control method for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2015, 10(6): 74–80 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.06.011
    [15]
    张显库, 韩旭. 船舶运输安全保障下的智能船舶运动控制策略[J]. 中国舰船研究, 2019, 14(增刊 1): 1–6.

    ZHANG X K, HAN X. The motion control strategy for intelligent ships based on ship transportation safeguard[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 1–6 (in Chinese).
    [16]
    王程博, 张新宇, 张加伟, 等. 未知环境中无人驾驶船舶智能避碰决策方法[J]. 中国舰船研究, 2018, 13(6): 72–77. doi: 10.19693/j.issn.1673-3185.01144

    WANG C B, ZHANG X Y, ZHANG J W, et al. Method for intelligent obstacle avoidance decision-making of unmanned vessel in unknown waters[J]. Chinese Journal of Ship Research, 2018, 13(6): 72–77 (in Chinese). doi: 10.19693/j.issn.1673-3185.01144

Catalog

    Article views (1967) PDF downloads (1335) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return