DU Y F, GAO J, ZHENG Q, et al. Characteristic prediction method of transonic axial flow turbine[J]. Chinese Journal of Ship Research, 2021, 16(2): 182–187. DOI: 10.19693/j.issn.1673-3185.01733
Citation: DU Y F, GAO J, ZHENG Q, et al. Characteristic prediction method of transonic axial flow turbine[J]. Chinese Journal of Ship Research, 2021, 16(2): 182–187. DOI: 10.19693/j.issn.1673-3185.01733

Characteristic prediction method of transonic axial flow turbine

More Information
  • Received Date: August 28, 2019
  • Revised Date: May 31, 2020
  • Available Online: December 07, 2020
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Regarding transonic flow occurring at the throat of the stator blades of axial flow turbines at high subsonic and transonic speeds, it is will need a long period of time to have 3D reseach and to obtain the characteristic parameters. Therefore, an cost-effective approach for predicting turbine characteristic is required.
      Methods  The existing loss models are integrated to predict turbine characteristics via one-dimensional programming and verify them via three-dimensional numerical simulation.
      Results  The results show that the relative error of the isentropic stage-temperature ratio is 11.53%, that of the stage-expansion ratio is 11.77% and that of the reaction degree is 14.23%. Whether transonic phenomena occur at the static blade is judged accurately. The adiabatic index of the outlet temperature of the rotor blade is used to estimate the characteristics of the single-stage turbine accurately.
      Conclusions  Within the range of acceptable error, this method allows the fast and accurate prediction of transonic turbine characteristics, thus reducing calculation time.
  • [1]
    董晓明, 石朝明, 黄坤, 等. 美海军DDG-1000全舰计算环境体系结构探析[J]. 中国舰船研究, 2012, 7(6): 7–15.

    DONG X M, SHI C M, HUANG K, et al. Analysis on the architecture of USN DDG-1000 total ship computing environment[J]. Chinese Journal of Ship Research, 2012, 7(6): 7–15 (in Chinese).
    [2]
    朱英富, 熊治国, 胡玉龙. 航空母舰发展的思考[J]. 中国舰船研究, 2016, 11(1): 1–7. doi: 10.3969/j.issn.1673-3185.2016.01.001

    ZHU Y F, XIONG Z G, HU Y L. On the development trends of aircraft carriers[J]. Chinese Journal of Ship Research, 2016, 11(1): 1–7 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.001
    [3]
    董明, 葛宁, 陈云. 跨声速涡轮叶栅激波损失控制方法[J]. 航空动力学报, 2018, 33(5): 1226–1235.

    DONG M, GE N, CHEN Y. Shock loss control methods for transonic turbine cascades[J]. Journal of Aerospace Power, 2018, 33(5): 1226–1235 (in Chinese).
    [4]
    STODOLA A. Dampfund gasturbinen[M]. Berlin: Springer Verlag, 1924.
    [5]
    BAMMERT K, ZEHNER P. Measurement of the four-quadrant characteristics on a multistage turbine[R]. [S.l.]: ASME, 1980.
    [6]
    SODERBERG C R. Unpublished notes, gas turbine laboratory[J]. Massachusetts Institute of Technology, 1949, 32(1): 436.
    [7]
    AINLEY D G, MATHIESON G C R. A method of performance estimation for axial-flow turbines[R]. London: British Aeronautical Research Council, R & M 2974, 1951.
    [8]
    DUNHAM J, CAME P M. Improvements to the Ainley-Mathieson method of turbine performance prediction[J]. Journal of Engineering for Gas Turbines and Power, 1970, 92(3): 252–256.
    [9]
    DENTON J D. Loss mechanisms in turbo machines[R]. [S. l. ]: ASME, 1987.
    [10]
    DENTON J D. Entropy generation in turbo machinery[M]. Cambridge, UK: Whittle Lab Cambridge University, 1990.
    [11]
    DENTON J D. Loss mechanisms in turbo machinery[R]. [S. l. ]: ASME, 1993.
    [12]
    TOURNIER J M, EL-GENK M S. Axial flow, multi-stage turbine and compressor models[J]. Energy Conversion and Management, 2009, 51(1): 16-29.
    [13]
    BATURIN O V, KOLMAKOVA D A. Development of a new equations describing profile losses in axial turbine blade row[J]. IOP Conference Series: Materials Science and Engineering, 2018, 302(1): 012026.
    [14]
    BATURIN O V, POPOV G M, KOLMAKOVA D A, et al. The best model for the calculation of profile losses in the axial turbine[J]. Journal of Physics: Conference Series, 2017, 803(1): 012017.
    [15]
    王永泓. 预估涡轮通流特性的新方法[J]. 船舶工程, 1990(5): 25–33, 12.

    WANG Y H. A new method of predicting turbine performance[J]. Ship Engineering, 1990(5): 25–33, 12 (in Chinese).
    [16]
    屈彬. 涡轮特性计算与燃机总体性能仿真[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    QU B. Calculation of turbine characteristics and overall performance simulation of gas turbine[D]. Harbin: Harbin Engineering University, 2011 (in Chinese).
    [17]
    LU J J, LU F, HUANG J Q. Performance estimation and fault diagnosis based on Levenberg-Marquardt algorithm for a turbofan engine[J]. Energies, 2018, 11(1): 181–199. doi: 10.3390/en11010181
    [18]
    卫明. 现代燃气轮机总体性能计算与改装优化设计[D]. 上海: 上海交通大学, 2014.

    WEI M. Overall performance calculation and design optimization of modern gas turbine[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
    [19]
    王士骥. 燃气轮机特性分析方法研究[J]. 军民两用技术与产品, 2017(9): 57–59, 62. doi: 10.3969/j.issn.1009-8119.2017.09.032

    WANG S J. Research on gas turbine characteristics analysis method[J]. Dual Use Technologies & Products, 2017(9): 57–59, 62 (in Chinese). doi: 10.3969/j.issn.1009-8119.2017.09.032
    [20]
    AINLEY D G, MATHIESON G C R. A method of performance estimation for axial-flow turbines[R]. London: Her Majesty's Stationery Office, 1951.
    [21]
    刘超. 航空涡轮损失预估方法研究[D]. 南京: 南京航空航天大学, 2013.

    LIU C. Research on loss prediction method of aero turbine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
    [22]
    《航空发动机设计手册》总编委会. 航空发动机设计手册. 第十册: 涡轮[M]. 北京: 航空工业出版社, 2001.

    Chief Editor Board of the Aero Engine Design Handbook. Aero engine design handbook, volume 10: turbine[M]. Beijing: Aviation Industry Press, 2001 (in Chinese).
    [23]
    徐静静. 带有缩放型流道的无导叶对转涡轮特性预估方法研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011.

    XU J J. Method research on the performance prediction of a vaneless counter-rotation turbine with converging-diverging nozzle[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2011 (in Chinese).
    [24]
    徐静静, 王会社, 周杰, 等. 带有缩放型流道的无导叶对转涡轮特性研究[J]. 工程热物理学报, 2011, 32(5): 755–758.

    XU J J, WANG H S, ZHOU J, et al. Performance prediction of a vaneless counter-rotating turbine with converging-diverging nozzle[J]. Journal of Engineering Thermophysics, 2011, 32(5): 755–758 (in Chinese).
  • Related Articles

    [1]TANG Tao, LI Yanjing, SONG Yikang, GAO Jie. Numerical simulation analysis on the aerodynamic performance of variable geometry turbine clamshell guide vanes[J]. Chinese Journal of Ship Research, 2022, 17(2): 212-219. DOI: 10.19693/j.issn.1673-3185.02295
    [2]Shi Shaohua, Feng Linhan, Du Zhipeng, Ji Chen. Analysis on shock resistance design indexes of elastic isolation installations[J]. Chinese Journal of Ship Research, 2019, 14(1): 66-71. DOI: 10.19693/j.issn.1673-3185.01164
    [3]QU Quanfu, LI Jinpeng. Optimization of naval ship electronic information system design based on the measure of dominance index[J]. Chinese Journal of Ship Research, 2018, 13(5): 121-125, 138. DOI: 10.19693/j.issn.1673-3185.01079
    [4]XUE Meng, MA Shi, LIU Yongbao. Effects of the trapezoid labyrinth on the casing on the aerodynamic performance of the shrouded turbine[J]. Chinese Journal of Ship Research, 2016, 11(3): 102-106. DOI: 10.3969/j.issn.1673-3185.2016.03.018
    [5]YANG Yuanlong, LI Jianbo, SUN Baozhi, YANG Longbin, WANG Xinggang. 船舶典型充汽管路水动力特性数值预测[J]. Chinese Journal of Ship Research, 2015, 10(4): 132-136. DOI: 10.3969/j.issn.1673-3185.2015.04.020
    [6]HUANG Sheng, GUO Haipeng, WANG Chao. Application of ISM on the Construction of Aircraft Carrier Evaluation Index Systems[J]. Chinese Journal of Ship Research, 2014, 9(1): 1-7. DOI: 10.3969/j.issn.1673-3185.2014.01.001
    [7]Fang Chao, Yue Yongwei, Wang Chao, Cao Dongmei. Numerical Research on Shock Resistance of LargeSized Turbines[J]. Chinese Journal of Ship Research, 2011, 6(5): 37-40,45. DOI: 10.3969/j.issn.16733185.2011.05.008
    [8]Feng Yongming, Wang Yinyan, Zhang Guolei, Wang Cheng. Matching Performance Enhancement of Turbocharged Unit and Boiler by Adjusting Throughflow Characteristics of Gas Turbine[J]. Chinese Journal of Ship Research, 2011, 6(4): 83-88,91. DOI: 10.3969/j.issn.1673-3185.2011.04.018
    [9]Shang Yanlong, Chen Lisheng, Cai Qi, Zhao Xinwen. Dynamic Reliability Analysis of the Nuclear Reactor Purification System Based on GO-FLOW Methodology[J]. Chinese Journal of Ship Research, 2011, 6(1): 73-77. DOI: 10.3969/j.issn.1673-3185.2011.01.014
    [10]Wu Yingyou,   Zhao Yao,   Chen Jiong . 汽轮给水泵机组振动频率特性分析[J]. Chinese Journal of Ship Research, 2006, 1(5-6): 90-93. DOI: 10.3969/j.issn.1673-3185.2006.06.020

Catalog

    Article views (616) PDF downloads (1056) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return