HUANG L W, WEI C Z, CHEN L Y, et al. Structural strength analysis of dispersed cross-deck of trimaran[J]. Chinese Journal of Ship Research, 2020, 15(5): 124–131. DOI: 10.19693/j.issn.1673-3185.01622
Citation: HUANG L W, WEI C Z, CHEN L Y, et al. Structural strength analysis of dispersed cross-deck of trimaran[J]. Chinese Journal of Ship Research, 2020, 15(5): 124–131. DOI: 10.19693/j.issn.1673-3185.01622

Structural strength analysis of dispersed cross-deck of trimaran

More Information
  • Received Date: May 23, 2019
  • Revised Date: September 16, 2019
  • Available Online: December 07, 2020
© 2020 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   Reducing the weight of the cross-deck is an important method for reducing the weight and center of gravity of a trimaran. Structural strength analysis is used as the premise for judging whether a weight reduction method is feasible.
      Methods  Based on the loading characteristics of a trimaran, a new dispersed cross-deck structure is proposed in which most of the unnecessary panels are removed. The finite element (FE) direct calculation method is adopted to analyze the structural strength of the dispersed cross-deck, and its strength is then compared with that of the traditional integral cross-deck.
      Results  The results show that using the dispersed cross-deck can reduce the structural weight and center of gravity of a trimaran by 6.75% and 5.54% respectively on the premise of meeting the structural strength requirements.
      Conclusions  Using the dispersed cross-deck can greatly reduce the structural weight and vertical location of the center of gravity, which provides new approaches for the structural design of trimarans.
  • [1]
    VAKILABADI K A, KHEDMATI M R, SEIF M S, et al. Experimental study on heave and pitch motion characteristics of a wave-piercing trimaran[J]. Transactions of FAMENA, 2014, 38(3): 13–26.
    [2]
    唐浩云, 任慧龙, 李辉, 等. 三体船在迎浪不规则波中的运动和载荷试验研究[J]. 振动与冲击, 2017, 36(18): 140–147.

    TANG H Y, REN H L, LI H, et al. Experimental study on the motion and load of a trimaran in irregular head waves[J]. Journal of Vibration and Shock, 2017, 36(18): 140–147 (in Chinese).
    [3]
    邓乐. 高速三体船结构力学特性研究[D]. 武汉: 武汉理工大学, 2008.

    DENG L. Study on mechanics characteristics of high-speed trimaran[D]. Wuhan: Wuhan University of Technology, 2008 (in Chinese).
    [4]
    谭伟. 铝合金三体船结构强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    TAN W. Structural strength analysis of aluminum-alloy trimaran[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [5]
    甄春博, 王天霖, 于鹏垚. 基于直接计算的三体船结构疲劳强度影响因素分析[J]. 中国舰船研究, 2017, 12(3): 86–90. doi: 10.3969/j.issn.1673-3185.2017.03.012

    ZHEN C B, WANG T L, YU P Y. Influencing factor analysis for direct calculation of trimaran structure's fatigue strength[J]. Chinese Journal of Ship Research, 2017, 12(3): 86–90 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.03.012
    [6]
    甄春博, 任慧龙, 张超, 等. 三体船结构强度直接计算分析[J]. 大连海事大学学报, 2012, 38(3): 31–35.

    ZHEN C B, REN H L, ZHANG C, et al. Direct calculation analysis on strength of trimaran structure[J]. Journal of Dalian Maritime University, 2012, 38(3): 31–35 (in Chinese).
    [7]
    徐敏, 张世联. 三体船连接桥结构型式研究[J]. 船舶工程, 2011, 33(增刊 2): 17–20.

    XU M, ZHANG S L. Research on cross-deck structure of a trimaran[J]. Ship Engineering, 2011, 33(Supp 2): 17–20 (in Chinese).
    [8]
    操安喜, 张大鹏, 许君迪, 等. 三体船连接桥新型结构形式研究[J]. 船舶力学, 2013, 17(1/2): 125–131.

    CAO A X, ZHANG D P, XU J D, et al. Research on strength of an innovative cross-deck structure for trimaran[J]. Journal of Ship Mechanics, 2013, 17(1/2): 125–131 (in Chinese).
    [9]
    曹正林, 吴卫国. 影响高速三体船连接桥砰击压力峰值因素研究[J]. 船舶力学, 2010, 14(3): 237–242. doi: 10.3969/j.issn.1007-7294.2010.03.004

    CAO Z L, WU W G. Factors affecting the slamming pressure peak value of trimaran cross structure[J]. Journal of Ship Mechanics, 2010, 14(3): 237–242 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.03.004
    [10]
    魏成柱, 易宏, 李英辉. 新概念高速穿梭艇系列船型及其直航性能[J]. 中国舰船研究, 2017, 12(2): 12–21. doi: 10.3969/j.issn.1673-3185.2017.02.002

    WEI C Z, YI H, LI Y H. Hull forms and straight forward CFD free running trials of high-speed shuttle vessels[J]. Chinese Journal of Ship Research, 2017, 12(2): 12–21 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.002
    [11]
    Lloyd's Register. Rules for the classification of trimarans[S]. Britain: Lloyd's Register, 2006.
    [12]
    中国船级社. 海上高速船入级与建造规范[S]. 北京: 人民交通出版社, 2015.

    China Classification Society. Rules for construction and classification of sea-going high-speed craft[S]. Beijing: China Communication Press, 2015 (in Chinese).
    [13]
    汪雪良, 胡嘉骏, 顾学康, 等. 三体船横向结构波浪设计载荷试验与规范比较研究[J]. 船舶力学, 2011, 15(3): 269–275. doi: 10.3969/j.issn.1007-7294.2011.03.008

    WANG X L, HU J J, GU X K, et al. Comparative studies of the transverse structure design wave loads for a trimaran by model tests and rule calculations[J]. Journal of Ship Mechanics, 2011, 15(3): 269–275 (in Chinese). doi: 10.3969/j.issn.1007-7294.2011.03.008
    [14]
    FANG M C, CHEN T Y. A parametric study of wave loads on trimaran ships traveling in waves[J]. Ocean Engineering, 2008, 35(8/9): 749–762.

Catalog

    Article views (760) PDF downloads (1084) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return