李祥弘, 于林, 苏婧, 乔磊. 有限视域与多元约束下大型AUV三维高速避障方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04084
引用本文: 李祥弘, 于林, 苏婧, 乔磊. 有限视域与多元约束下大型AUV三维高速避障方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.04084
High-speed 3D obstacle avoidance method for large-scale AUVs under limited FoV and multiple constraints[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04084
Citation: High-speed 3D obstacle avoidance method for large-scale AUVs under limited FoV and multiple constraints[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04084

有限视域与多元约束下大型AUV三维高速避障方法

High-speed 3D obstacle avoidance method for large-scale AUVs under limited FoV and multiple constraints

  • 摘要: 【目的】现有AUV避障研究主要考虑中小型AUV低速避障,并且过于简化系统内外多元约束,针对有限视域与复杂约束下的大型AUV三维高速避障鲜有研究。为填补该空白,提出一种大型AUV实时三维高速避障方法。【方法】所提方法整合了感知、规划和控制模块,使得大型、高速、欠驱动AUV能够在未知非结构化海底地形上安全高效航行。首先,构建以机器人为中心的双分辨率海底地形图,以平衡感知精度和计算效率。接着,设计包含滤波器、特征提取与匹配的动态感知框架,实现未知移动障碍物运动预测。之后,结合全局考虑风险的路径搜索和局部时空联合的轨迹优化,生成满足多元约束的激进轨迹。最后,采用球坐标系反馈控制器进行轨迹跟踪。【结果】在长航程海床高速跨越的高保真实验中,长度为13.96 m的大型AUV能够灵活躲避动静态障碍物,并遵守多元约束,同时全航程维持6.0 m/s的预设速度。【结论】所提方案可使大型高速AUV在有限视域和多元约束下,安全避障敏捷航行,有效提升自主作业能力。

     

    Abstract: ObjectivesExisting works mainly cover low-speed navigation for small- to medium-sized Autonomous Underwater Vehicles (AUVs) and often oversimplify internal and external constraints. There is a lack of research addressing high-speed 3D obstacle avoidance for large-scale AUVs under limited Field of View (FoV) and complex constraints. To address this gap, an online 3D obstacle avoidance scheme for large-scale high-speed AUVs is proposed. MethodsThis method integrates perception, planning, and control modules, enabling large-scale, high-speed, underactuated AUVs to navigate safely and efficiently through the unknown and unstructured ocean floor. First, a robocentric, dual-resolution seafloor map is constructed to balance perception accuracy with computational efficiency. Subsequently, a dynamic perception framework incorporating filters, feature extraction and matching is designed to achieve motion prediction of unknown moving obstacles. Next, global risk-aware path searching and local spatial-temporal trajectory optimization are proposed to generate an aggressive trajectory satisfying constraints. Finally, a spherical-coordinate feedback controller is employed for trajectory tracking. ResultsIn high-fidelity experiments involving long-range seabed traversal, a 13.96-meter-long AUV flexibly avoids dynamic and static obstacles while adhering to constraints, maintaining a predefined speed of 6.0 m/s. ConclusionsThe proposed approach enables the large-scale high-speed AUV to navigate agilely and avoid obstacles safely under limited FoV and multiple constraints, enhancing its operation capabilities.

     

/

返回文章
返回