罗峰, 孔祥韶, 金泽宇, 等. 复合壳体水中高静压试验及极限承载能力分析[J]. 中国舰船研究, 2024, 19(5): 1–9. DOI: 10.19693/j.issn.1673-3185.03435
引用本文: 罗峰, 孔祥韶, 金泽宇, 等. 复合壳体水中高静压试验及极限承载能力分析[J]. 中国舰船研究, 2024, 19(5): 1–9. DOI: 10.19693/j.issn.1673-3185.03435
LUO F, KONG X S, JIN Z Y, et al. High hydrostatic pressure test and ultimate load capacity of composite shell in water[J]. Chinese Journal of Ship Research, 2024, 19(5): 1–9 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03435
Citation: LUO F, KONG X S, JIN Z Y, et al. High hydrostatic pressure test and ultimate load capacity of composite shell in water[J]. Chinese Journal of Ship Research, 2024, 19(5): 1–9 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03435

复合壳体水中高静压试验及极限承载能力分析

High hydrostatic pressure test and ultimate load capacity of composite shell in water

  • 摘要:
    目的 旨在实现在水中高静压环境下对结构应变的准确测试,同时探究复合壳体在水中高静压环境下的极限承载能力大小以及不同初始缺陷的影响。
    方法 首先,开展复合壳体水下高静压试验,提出基于高压防护装置的水下高静压3D-DIC测试方法,获得结构在15 MPa水压下的应变;然后,将其与有限元模型模拟结果进行对比,验证3D-DIC测试系统在水中高静压环境下的可行性以及数值模型的正确性;最后,在此基础上针对不同初始缺陷条件对复合壳体极限承载能力的影响开展仿真计算。
    结果 结果显示,试验结果与数值仿真结果的平均误差为5.1%;不同模态下复合壳体的极限承载能力与添加的几何缺陷大小呈二次函数关系,其中,一阶模态下极限承载能力的变化梯度为1.48~2.12 MPa/mm,三阶模态下极限承载能力的平均变化梯度为1~4.32 MPa/mm。
    结论 3D-DIC测试技术在水中高静压环境下可以对复合壳体进行准确的应变测量。在水中高静压环境下,几何初始缺陷在很大程度上影响复合壳体的极限承载能力,其中三阶模态的影响程度大于一阶模态。

     

    Abstract:
    Objectives This study proposes a structural strain test method for investigating the buckling pressure of a composite shell in a high hydrostatic pressure water environment and the effects of different initial defects.
    Methods A high hydrostatic pressure test is conducted on a composite shell, and the strain of the structure is measured under 15 MPa hydrostatic pressure using the deep-water 3D-DIC (digital image correlation) method based on a high pressure shield. The results are compared to numerical simulations to confirm the feasibility of the 3D-DIC test system in a high hydrostatic pressure environment and verify the accuracy of the numerical method. Based on the numerical simulation method, research is then conducted on the buckling behavior of the composite shell.
    Results The average error between the experimental results and numerical simulation results is found to be 7.2%. In addition, the ultimate load capacity of the composite shell is found to be in an almost quadratic function relationship to the size of the added geometric defects in different modes, and the average gradient of change in the ultimate load capacity is 1.48−2.12 MPa/mm in the first order mode and 1−4.32 MPa/mm in the third order mode.
    Conclusions 3D-DIC test technology allows for the accurate strain measurement of composite shells in high hydrostatic pressure environments. Moreover, in such an environment, geometric defects largely affect the ultimate load capacity of the composite shell, while third-order modes are affected to a greater extent than first-order modes.

     

/

返回文章
返回