基于快速随机搜索树*与凸优化的船舶路径规划与跟踪算法

Ship path planning and tracking based on rapidly exploring random tree star and convex optimization

  • 摘要:
    目的 针对欠驱动船舶在障碍物水域的路径规划与路径跟踪问题,提出一种基于快速随机搜索树*(RRT*)与凸优化的船舶路径规划与跟踪算法。
    方法 通过使用RRT*算法,在栅格环境中进行采样并规划出可行路径,得到关键点序列。针对可行路径中的关键点序列,基于有限记忆BFGS凸优化算法和Cubic样条曲线,对曲线的经济性与安全性进行优化,获取时间参数化的更平滑和安全的船舶路径。最后,使用模型预测控制算法进行船舶控制输出序列规划,引导船舶安全、经济地避开障碍物,从起始点航行至目标点。
    结果 结果显示 ,采用该算法对一艘船舶的运动进行模拟,可实现有效的路径规划和跟踪,路径搜索时间少于2×10−5 s,路径优化时间少于0.5 s,路径跟踪绝对误差小于0.75 m。
    结论 所做研究表明所提路径规划与跟踪算法能够确保船舶的有效路径搜索与优化,可为无人船舶的进一步研究和工程化应用提供一定的思路。

     

    Abstract:
    Objectives To address the challenges of path planning and tracking for underactuated ships in obstacle-filled waters, this paper proposes a ship path planning and tracking algorithm based on the rapidly exploring random tree (RRT*) and convex optimization.
    Methods  The method utilizes the RRT* algorithm to sample and plan feasible paths in a grid environment, generating a sequence of key points for further optimization. For the key point sequence in the feasible path, optimization of the economic and safety aspects of the curve is achieved through limited memory BFGS (L-BFGS) convex optimization algorithm and cubic spline curves, yielding smoother and safer ship paths parameterized by time. Finally, model predictive control (MPC) algorithm is employed to generate ship control output sequences, enabling safe and efficient navigation around obstacles from the starting point to the destination.
    Results Simulation results demonstrate that using this algorithm, ships can achieve efficient path planning and trajectory tracking, with path search time less than 2×10−5 s, path optimization time less than 0.5 seconds, and trajectory tracking absolute error less than 0.75 m.
    Conclusions Simulation results indicate that the proposed path planning and tracking algorithm ensures effective path search and optimization for ships, providing a foundation for further research and industrial applications of autonomous surface vehicles.

     

/

返回文章
返回